如圖,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,BC=4cm,以點(diǎn)C為圓心,4cm為半徑畫⊙C,請(qǐng)判斷BD與⊙C的位置關(guān)系,并說明理由.

【答案】分析:欲求圓與BD的位置關(guān)系,關(guān)鍵是求出點(diǎn)C到AB的距離d,再與半徑r=4cm進(jìn)行比較.若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:∵∠ACB=90°,∠A=30°,
∴AB=2BC=8cm,
∴AC==4cm,
由面積公式得AC•BC=AB•CD,
∴CD==2cm,
∴CD=2cm<4cm,
∴圓與BD的位置關(guān)系是相交.
點(diǎn)評(píng):本題考查的是直線與圓的位置關(guān)系,解決此類問題可通過比較圓心到直線距離d與圓半徑大小關(guān)系完成判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案