【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC、DC分別交于點G,F(xiàn),H為CG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若 ,則3SEDH=13SDHC , 其中結(jié)論正確的有( )

A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:①∵四邊形ABCD為正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG為等腰直角三角形,
∴GF=FC,
∵EG=EF﹣GF,DF=CD﹣FC,
∴EG=DF,故①正確;
②∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,
在△EHF和△DHC中, ,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正確;
③∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,
在△EHF和△DHC中, ,
∴△EHF≌△DHC(SAS),故③正確;
④∵ ,
∴AE=2BE,
∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD為等腰直角三角形,
過H點作HM垂直于CD于M點,如圖所示:
設(shè)HM=x,則DM=5x,DH= x,CD=6x,
則SDHC= ×HM×CD=3x2 , SEDH= ×DH2=13x2 ,
∴3SEDH=13SDHC , 故④正確;
故選:D.

【考點精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,是木桿和旗桿豎在操場上,其中木桿在陽光下的影子已畫出.
(1)用線段表示這一時刻旗桿在陽光下的影子.
(2)比較旗桿與木桿影子的長短.
(3)圖中是否出現(xiàn)了相似三角形?
(4)為了出現(xiàn)這樣的相似三角形,木桿不可以放在圖中的哪些位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點EF . 過點EEGBC , 交ABG , 則圖中相似三角形有( 。
A.4對
B.5對
C.6對
D.7對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于P(n,2),與x軸交于A(﹣4,0),與y軸交于C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象有一點D,使得以B、C、P、D為頂點的四邊形是菱形,求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.

(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標(biāo)有數(shù)字1,2,3的小球,乙口袋中裝有2個分別標(biāo)有數(shù)字4,5的小球,它們的形狀、大小完全相同,現(xiàn)隨機(jī)從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個數(shù)字之和能被3整除的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( )

A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.

(1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.

查看答案和解析>>

同步練習(xí)冊答案