【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時(shí),統(tǒng)計(jì)中常用各組的組中值代表各組的實(shí)際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請(qǐng)你依據(jù)以上知識(shí),解決下面的實(shí)際問(wèn)題.
為了解5路公共汽車的運(yùn)營(yíng)情況,公交部門統(tǒng)計(jì)了某天5路公共汽車每個(gè)運(yùn)行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計(jì)圖:

(1)求A組對(duì)應(yīng)扇形圓心角的度數(shù),并寫(xiě)出這天載客量的中位數(shù)所在的組;
(2)求這天5路公共汽車平均每班的載客量;
(3)如果一個(gè)月按30天計(jì)算,請(qǐng)估計(jì)5路公共汽車一個(gè)月的總載客量,并把結(jié)果用科學(xué)記數(shù)法表示出來(lái).

【答案】
(1)解:A組對(duì)應(yīng)扇形圓心角度數(shù)為:360°× =72°;

這天載客量的中位數(shù)在B組


(2)解:各組組中值為:A: =10,B: =30;C: =50;D: =70;

=38(人),

答:這天5路公共汽車平均每班的載客量是38人


(3)解:可以估計(jì),一個(gè)月的總載客量約為38×50×30=57000=5.7×104(人),

答:5路公共汽車一個(gè)月的總載客量約為5.7×104


【解析】(1)利用360°乘以A組所占比例即可;(2)首先計(jì)算出各組的組中值,然后再利用加權(quán)平均數(shù)公式計(jì)算平均數(shù);(3)利用平均每班的載客量×天數(shù)×次數(shù)可得一個(gè)月的總載客量.此題主要考查了頻數(shù)分布直方圖以及中位數(shù)的定義、扇形統(tǒng)計(jì)圖等知識(shí),正確利用已知圖形獲取正確信息是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=25°,∠ADC=115°,O為AB的中點(diǎn),以點(diǎn)O為圓心、AO長(zhǎng)為半徑作圓,恰好點(diǎn)D在⊙O上,連接OD,若∠EAD=25°,下列說(shuō)法中不正確的是(

A.D是劣弧 的中點(diǎn)
B.CD是⊙O的切線
C.AE∥OD
D.∠DOB=∠EAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBC上任意一點(diǎn),過(guò)點(diǎn)D分別向AB、AC引垂線,垂足分別為點(diǎn)E、F.

(1)如圖①,當(dāng)點(diǎn)DBC的什么位置時(shí),DE=DF?并證明;

(2)在滿足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?請(qǐng)寫(xiě)出所有的全等三角形(不必證明);

(3)如圖②,過(guò)點(diǎn)CAB邊上的高CG,請(qǐng)問(wèn)DE、DF、CG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.

(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC相切于點(diǎn)E.

(1)若AC=5,BC=13,求⊙O的半徑;
(2)過(guò)點(diǎn)E作弦EF⊥AB于M,連接AF,若∠F=2∠B,求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點(diǎn)A(m﹣2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC.

(1)求m、n的值;
(2)如圖2,點(diǎn)N為拋物線上的一動(dòng)點(diǎn),且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點(diǎn)M、P分別為線段BC和線段OB上的動(dòng)點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使△PCM為等腰三角形,△PMB為直角三角形同時(shí)成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,點(diǎn).

1)若,求得度數(shù);

2)若,,求邊上的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案