矩形ABCO的面積為10,OA比OC大3,E為BC的中點(diǎn),以O(shè)E為直徑的⊙交x軸于D,DF⊥AE于F.

(1)求OA、OC的長(zhǎng).

(2)求DF長(zhǎng);

(3)P為邊BC上一動(dòng)點(diǎn),設(shè)△ABP的面積為x,△OPC的面積為y,求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.

(4)直線BC上是否存在點(diǎn)Q,使∠AQO=90°,若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  (1)OA=5OC=2

  (2)DF=

  (3)(4)(-1,2)(-4,2)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2.E為BC的精英家教網(wǎng)中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于點(diǎn)F.
(1)求OA、OC的長(zhǎng);
(2)求證:DF為⊙O′的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,且OA=OC+2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交y軸于D點(diǎn),過(guò)D作DF⊥AE于點(diǎn)F.
(1)求OA、OC的長(zhǎng);
(2)求證:DF為⊙O′的切線;
(3)小亮在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形,且△AOE的面積是四邊形ABCO面積的一半.由此,他根據(jù)自己過(guò)去解題的實(shí)踐斷定:“直線BC上一定存在除點(diǎn)E以外的P點(diǎn),使△AOP既是等腰三角形,又和△AOE的面積相等”.你同意他的斷言嗎?若同意,請(qǐng)你求出所有滿足上述條件的點(diǎn)P的坐標(biāo),若不同意,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

矩形ABCO的面積為10,OA比OC大3,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D,DF⊥AE于F.精英家教網(wǎng)
(1)求OA、OC的長(zhǎng).
(2)求DF長(zhǎng);
(3)P為邊BC上一動(dòng)點(diǎn),設(shè)△ABP的面積為x,△OPC的面積為y,求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(4)直線BC上是否存在點(diǎn)Q,使∠AQO=90°?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交X軸于D點(diǎn),過(guò)D點(diǎn)作DF⊥AE于F.
(1)求OA和OC的長(zhǎng);
(2)求證:OE=AE;
(3)求證:DF是⊙O′的切線;
(4)在邊BC上是否存在除E點(diǎn)以外的P點(diǎn),使△AOP是等腰三角形?如果存在,請(qǐng)寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)B是反比例函數(shù)y=-
18x
圖象在第二象限內(nèi)的一點(diǎn),且矩形ABCO的兩邊BC:CO=1:2,則矩形ABCO的面積為
18
18

查看答案和解析>>

同步練習(xí)冊(cè)答案