3.如圖,⊙O是△ABC的外接圓,若∠AOB=110°,則∠ACB的度數(shù)是( 。
A.55°B.70°C.125°D.110°

分析 根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)即可得到結(jié)論.

解答 解:如圖,在優(yōu)弧AB上取一點(diǎn)D,連接AD,BD,
則∠ADB=$\frac{1}{2}∠$AOB=55°,
∴∠ACB=180°-∠ADB=125°,
故選C.

點(diǎn)評(píng) 本題考查了圓周角定理、圓內(nèi)接四邊形的性質(zhì),熟練掌握圓周角定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知:點(diǎn)P是平行四邊形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BP作垂線,垂足分別為E、F,點(diǎn)O為AC的中點(diǎn).

(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)如圖1,求證:OE=OF
(2)直線BP繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),當(dāng)點(diǎn)P在對(duì)角線AC上時(shí),且∠OFE=30°時(shí),如圖2,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?并給予證明.
(3)當(dāng)點(diǎn)P在對(duì)角線CA的延長線上時(shí),且∠OFE=30°時(shí),如圖3,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線y=2(x-3)2-1的頂點(diǎn)坐標(biāo)是( 。
A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.甲、乙、丙三名運(yùn)動(dòng)員參加了射擊預(yù)選賽,他們射擊的平均環(huán)數(shù)$\overline{x}$及其方差s2如表所示.需要選一個(gè)成績較好且狀態(tài)穩(wěn)定的人去參賽,如果選定的是乙,則乙的情況應(yīng)為( 。
$\overline{x}$89
s211.2
A.$\overline x=8$,S2=0.7B.$\overline x=8$,S2=1.2C.$\overline x=9$,S2=1D.$\overline x=9$,S2=1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,A,B,C在⊙O上,AB是⊙O內(nèi)接正六邊形一邊,BC是⊙O內(nèi)接正十邊形的一邊,若AC是⊙O內(nèi)接正n邊形的一邊,則n等于( 。
A.12B.15C.18D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.下列圖形中,哪一個(gè)是棱錐的側(cè)面展開圖( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.若$\frac{a}$=$\frac{1}{2}$,則$\frac{a}{a+b}$的值是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,已知反比例函數(shù)y=$\frac{k}{x}$(x>0)圖象經(jīng)過點(diǎn)(4,$\sqrt{3}$),點(diǎn)D為反比例函數(shù)y=$\frac{k}{x}$(x>0)上的任意一點(diǎn),以D為圓心的圓始終與y軸相切于點(diǎn)A.
(1)求該反比例函數(shù)解析式;
(2)如圖1,當(dāng)⊙D與x軸相交于B、C兩點(diǎn),且四邊形ABCD是菱形時(shí),求出點(diǎn)D的坐標(biāo);
(3)如圖2,當(dāng)⊙D與x軸相切于點(diǎn)E時(shí),過點(diǎn)D作直線l,分別交x軸的正半軸于點(diǎn)M,交y軸的正半軸于點(diǎn)N,則$\frac{1}{OM}$+$\frac{1}{ON}$是否為定值?若是,請證明:若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在平面直角坐標(biāo)系中,直線OP過點(diǎn)(1,3),則tanα的值是(  )
A.$\frac{1}{3}$B.3C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

同步練習(xí)冊答案