已知等邊三角形的邊長為x(cm),則此三角形的面積S(cm2)關(guān)于x的函數(shù)關(guān)系式是______.
作出BC邊上的高AD.
∵△ABC是等邊三角形,邊長為x,
∴CD=
1
2
x,
∴高為h=
3
2
x,
∴S=
1
2
x×h=
3
4
x2
故答案為:S=
3
4
x2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過A、C兩點(diǎn)的拋物線y=x2+bx+c上有一點(diǎn)M,已知A(-1,0),C(0,-2),
(1)這個拋物線的解析式為______;
(2)作⊙M與直線AC相切,切點(diǎn)為C,則M點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點(diǎn),且與y軸交于點(diǎn)E.(1)求拋物線的解析式;
(2)若點(diǎn)F的坐標(biāo)為(0,-
1
2
),直線BF交拋物線于另一點(diǎn)P,試比較△AFO與△PEF的周長的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A,B,C三點(diǎn),當(dāng)x≥0時,其圖象如圖所示.
(1)求拋物線的解析式,寫出拋物線的頂點(diǎn)坐標(biāo);
(2)畫出拋物線y=ax2+bx+c當(dāng)x<0時的圖象;
(3)利用拋物線y=ax2+bx+c,寫出x為何值時,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn)A(-3,m),求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移n(n>0)個單位后得到的圖象記為G,同時將(2)中得到的直線y=kx+6向上平移n個單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)存在一次函數(shù)關(guān)系:y=-x+120.
(1)若商場要想獲得800元的利潤,則銷售單價應(yīng)是多少元?
(2)若設(shè)該商場獲得利潤為W元,當(dāng)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一個小服裝廠生產(chǎn)某種風(fēng)衣,售價P(元/件)與月銷售量x(件)之間的關(guān)系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠的月產(chǎn)量為多大時,獲得的月利潤為1300元?
(2)當(dāng)月產(chǎn)量為多少時,可獲得最大月利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)y=a(x+1)2-4的圖象與x軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)D,點(diǎn)C是二次函數(shù)y=a(x+1)2-4的圖象的頂點(diǎn),CD=
2

(1)求a的值.
(2)點(diǎn)M在二次函數(shù)y=a(x+1)2-4圖象的對稱軸上,且∠AMC=∠BDO,求點(diǎn)M的坐標(biāo).
(3)將二次函數(shù)y=a(x+1)2-4的圖象向下平移k(k>0)個單位,平移后的圖象與直線CD分別交于E、F兩點(diǎn)(點(diǎn)F在點(diǎn)E左側(cè)),設(shè)平移后的二次函數(shù)的圖象的頂點(diǎn)為C1,與y軸的交點(diǎn)為D1,是否存在實(shí)數(shù)k,使得CF⊥FC1?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用一塊長為50cm、寬為30cm的長方形鐵片制作一個無蓋的盒子,若在鐵片的四個角截去四個相同的小正方形,設(shè)小正方形的邊長為xcm.
(1)底面的長AB=______cm,寬BC=______cm(用含x的代數(shù)式表示)
(2)當(dāng)做成盒子的底面積為300cm2時,求該盒子的容積.
(3)該盒子的側(cè)面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案