(2013•蕭山區(qū)模擬)如圖,△ABC中,E、F分別是AB,AC的中點(diǎn),若△AEF的面積為1,則四邊形EBCF的面積為( 。
分析:根據(jù)三角形的中位線得出EF∥BC,推出△AEF∽△ABC,得出比例式,求出△ABC的面積,即可得出答案.
解答:解:∵E、F分別是AB,AC的中點(diǎn),
∴EF∥BC,
∴△AEF∽△ABC,
S△AEF
S△ABC
=(
EF
BC
)
2
=(
1
2
)
2
=
1
4
,
∵△AEF的面積為1,
∴△ABC的面積是4,
∴四邊形EBCF的面積是4-1=3,
故選C.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定,三角形的中位線定理的應(yīng)用,注意:相似三角形的面積比等于相似比的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)數(shù)據(jù)5、6、7、8、9,這組數(shù)的平均數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)從下列4個(gè)函數(shù):①y=3x-2;②y=-
7
x
(x<0)
;③y=
5
x
(x>0)
;④y=-x2(x<0)中任取一個(gè),函數(shù)值y隨自變量x的增大而增大的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)如圖,直線y=-
4
3
x+8
與x軸、y軸交于A、B兩點(diǎn),∠BAO的平分線所在的直線AM的解析式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)杭州灣跨海大橋兩主塔與它們之間的斜拉索構(gòu)成美輪美奐的對(duì)稱造型,現(xiàn)測(cè)得跨海大橋主塔AB、CD之間的距離BD為448米,主塔AB的一根斜拉索AF的仰角為∠AFB=28.2°,且EF的長(zhǎng)度為36米,求該橋的主塔AB高為多少米.(精確到米,sin28.2°≈0.473,cos28.2°≈0.881,tan28.2°≈0.536)

查看答案和解析>>

同步練習(xí)冊(cè)答案