如圖,ADAE分別是△ABCBC邊上的高和中線,點D是垂足,點EBC的中點,規(guī)定:λA.特別地,當點D、E重合時,規(guī)定:λA=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖,在△ABC中,∠C=90o,∠A=30o,求λA、λC;

(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;

(3)判斷下列三個命題的真假(真命題打“√”,假命題打“×”):

①若△ABCλA<1,則△ABC為銳角三角形;(  )

②若△ABCλA=1,則△ABC為銳角三角形;(  )

③若△ABCλA>1,則△ABC為銳角三角形.(  )

答案:
解析:

  解:(1)如圖,作BC邊上的中線AD,又ACBC

  ∴λA=1  2分

  過點C分別作AB邊上的高CE和中線CF  1分

  ∵∠ACB=90o

  ∴AFCF

  ∴∠ACF=∠CAF=30o

  ∴∠CFE=60o

  ∴λC=cos60o=  3分

  (2)

  (畫出的圖形滿足=2就給2分)  3分

  (3)×;√;√  3分

  (每小題各1分,若出現(xiàn)寫“真”“假”或?qū)憽皩Α薄板e”同樣給分)


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、在圖1-5中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實踐探究:
(1)正方形FGCH的面積是
a2+b2
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):當b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移;當b>a時,如圖5的圖形能否剪拼成一個正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察發(fā)現(xiàn)
(1)如圖1,若點A、B在直線l同側(cè),在直線l上找一點P,使AP+BP的值最。
作法如下:作點B關(guān)于直線l的對稱點B′,連接AB′,與直線l的交點就是所求的點P.
(2)如圖2,在等邊三角形ABC中,AB=4,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
作法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為
2
3
2
3

實踐運用
如圖3,菱形ABCD中,對角線AC、BD分別為6和8,M、N分別是邊BC、CD的中點,若點P是BD上的動點,則MP+PN的最小值是
5
5

拓展延伸
(1)如圖4,正方形ABCD的邊長為5,∠DAC的平分線交DC于點E.若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是
5
2
2
5
2
2

(2)如圖5,在四邊形ABCD的對角線BD上找一點P,使∠APB=∠CPB.保留畫圖痕跡,并簡要寫出畫法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD、AE分別為△ABC的高和角平分線,∠B=35°,∠C=45°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,AD、AE分別為△ABC的高和角平分線,∠B=35°,∠C=45°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:填空題

如圖,AD、AE分別是△ABC的高和中線,已知AD=5cm,CE=6cm,則△ABE和△ABC的面積分別為(    )。

查看答案和解析>>

同步練習冊答案