如圖,△ABC為等邊三角形,D是△ABC 內(nèi)一點(diǎn),且AD=2,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACE的位置,這時(shí)點(diǎn)D走過(guò)的路線長(zhǎng)為         

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知:如圖,AB是⊙O的直徑,CD是⊙O的弦,且ABCD,垂足為E

(1)求證:∠CDB=∠A;

(2)若BD=5,AD= 12,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,⊙的半徑為5,為弦,,垂足為,如果,那么的長(zhǎng)是(     )

A.4        B.   6       C. 8         D.  10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍.

(1)求此拋物線的解析式和直線的解析式;               

(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問(wèn)當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△AOC相似;

(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大.若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


將拋物線先沿軸向右平移1個(gè)單位, 再沿軸向上移2個(gè)單位,所得拋物線的解析式是

A.                  B.          

C.               D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中有兩個(gè)三角形△ABC和△DEF,試證這兩個(gè)三角形相似.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知關(guān)于x的方程

(1)當(dāng)k取何值時(shí),方程有兩個(gè)實(shí)數(shù)根;

(2)若二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值并用配方法求出拋物線的頂點(diǎn)坐標(biāo);

(3)若(2)中的拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).將拋物線向上平移n個(gè)單位,使平移后得到的拋物線的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△中,點(diǎn)分別在邊上,,若,,則等于

A.            B.             C.            D.

查看答案和解析>>

同步練習(xí)冊(cè)答案