【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機, 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個正整數(shù)).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶數(shù),進而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是( )
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了二次根式的相關(guān)運算后,我們發(fā)現(xiàn)一些含有根號的式子可以表示成另一個式子的平方,如:
3+2=2+2+1=()2+2+1=(+1)2;
5+2=2+2+3=()2+2××+()2=(+)2
(1)請仿照上面式子的變化過程,把下列各式化成另一個式子的平方的形式:
①4+2;②6+4
(2)若a+4=(m+n)2,且a,m,n都是正整數(shù),試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________.
(2)錯誤原因為________.
(3)本題正確結(jié)論是什么,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某重點中學(xué)校團委、學(xué)生會發(fā)出倡議,在初中各年級捐款購買書籍送給我市貧困地區(qū)的學(xué)校.初一年級利用捐款買甲、乙兩種自然科學(xué)書籍若干本,用去5324元;初二年級買了A、B兩種文學(xué)書籍若干本,用去4840元,其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同.若甲、乙兩種書的單價之和為121元,則初一和初二兩個年級共向貧困地區(qū)的學(xué)校捐獻了________本書.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,和都是邊長為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動過程中,四邊形有可能是矩形嗎?如果是,請求出點B移動的距離寫出過程;如果不是,請說明理由圖3供操作時使用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
①畫出與△ABC關(guān)于y軸對稱的△A1B1C1 , 求點C1的坐標(biāo)。
②以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖
(1)問題:如圖①,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.
求證:ADBC=APBP.
(2)探究:如圖②,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖③,在△ABD中,AB=6,AD=BD=5,點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A,設(shè)點P的運動時間為t秒,當(dāng)以D為圓心,以DC為半徑的圓與AB相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com