18、已知:如圖梯形ABCD中,AD∥BC,AB=CD,AC與BD相交于點O.
(1)寫出圖中兩對全等三角形和一個等腰三角形;
(2)選擇一對你所寫的全等三角形證明.
分析:根據(jù)等腰梯形的性質(zhì)及全等三角形的判定方法找出圖中存在的全等三角形,及等腰三角形,運用全等三角形的判定方法驗證.
解答:解:圖中的全等三角形有:△ABD≌△DCA,△ABC≌△DCB,△OAB≌△ODC.
等腰三角形有:△OBC,△OAD.
證明:∵梯形ABCD中,AD∥BC,AB=CD,
∴∠ABC=∠DCB.
∵AB=DC,BC=BC,
∴△ABC≌△DCB(SAS).
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,△ABC中,AC<AB<BC.
(1)在BC邊上確定點P的位置,使∠APC=∠C.請畫出圖形,不寫畫法;
(2)在圖中畫出一條直線l,使得直線l分別與AB、BC邊交于點M、N,并且沿直線l將△ABC剪開后可拼成一個等腰梯形.請畫出直線l及拼接后的等腰梯形,并簡要說明你的剪拼方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖,△ABC與△BDE都是正三角形,且點D在邊AC上,并與端點A、C不重合.求證:(1)△ABE≌△CBD;(2)四邊形AEBC是梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、證明題:(1)等腰梯形的對角線交點與同一底的兩個端點的距離相等.
已知:如圖,等腰梯形ABCD,BC=AD,兩對角線相交于O點.
求證:OA=OB.
證明:∵在△ACD與△BDC中
BC=AD(
等腰梯形的性質(zhì)

∠ADC=∠BCD(
等腰梯形的性質(zhì)

CD=CD
(公共邊)
∴△ACD≌△BDC(
SAS

∴∠1=∠2  (
全等的性質(zhì)

又∵∠DAB=∠ABC(等腰梯形的性質(zhì))
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(
等價代換

OA=OB
( 等角對等邊)
(2)已知:如圖,△ABC中BE為∠B的角平分線DE∥BC.求證:BD=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解題:
已知:如圖,△ABC中,AB=AC,P是底邊BC上的任一點(不與B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求證:CD=PE+PF.
在解答這個問題時,小明與小穎的思路方法分別如下:
小明的思路方法是:過點P作PG⊥CD于G(如圖1),則可證得四邊形PEDG是矩形,也可證得△PCG≌△CPF,從而得到PE=DG,PF=CG,因此得CD=PE+PF.
小穎的思路方法是:連接PA(如圖2),則S△ABC=S△PAB+S△PAC,再由三角形的面積公式便可證得CD=PE+PF.
由此得到結(jié)論:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高.
閱讀上面的材料,然后解答下面的問題:
(1)針對小明或小穎的思路方法,請選擇倆人中的一種方法把證明過程補充完整
(2)如圖3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一點,EM⊥BD于M,EN⊥AC于N,試?yán)蒙鲜鼋Y(jié)論
求EM+EN的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC中,AB=AC,BD、CE分別是AC、AB邊上的高,連接DE.
求證:(1)△ABD≌△ACE;
(2)四邊形BCDE是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案