我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經過三角形的一個頂點引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請你直接應用上述結論解決以下問題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點C落在點E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問線段AE與線段BD有什么關系?在圖中按要求畫出圖形,并說明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點D是AB邊的中點,點P是BC邊上的任意一點,連接PD,沿PD翻折△ADP,使點A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.
分析:(1)如圖2,線段AE與BD平行且相等;利用上述結論易證得AF=BF,DF=EF;然后通過△AFE≌△BFD(SAS),來證AE=BD,且AE∥BD;
(2)如圖3,BP2=4或12.
解答:(1)解:如圖2,線段AE與BD平行且相等.理由如下:
∵AD是△ABC的中線,
∴S△ABD=S△ADC=
1
2
S△ABC
∵S△ADF=
1
4
S△ABC,
∴S△ADF=S△BDF=
1
2
S△ABD
∴AF=BF.
同理,DF=EF.
在△AFE與△BFD中,
BF=DF
∠EFA=∠DFB
AF=BF
,
∴△AFE≌△BFD(SAS),
∴AE=BD,∠EAF=∠DBF,
∴AE∥BD.
∴線段AE與BD平行且相等;

(2)BP2=4或12.
點評:本題考查了三角形的面積、全等三角形的判定與性質以及翻折變換.折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即
CB
AC
=
AC
AB
=
5
-1
2
=0.61803398874989
.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關系是什么并證明你的結論.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即數(shù)學公式.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關系是什么并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年北京市大興區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關系是什么并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市大興區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•大興區(qū)二模)我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關系是什么并證明你的結論.

查看答案和解析>>

同步練習冊答案