【答案】
分析:(1)由直線y=-2x+n可以求得OA,OB的長(zhǎng)度,代入S
△OAB=16解得n值;
(2)由直線與拋物線之間的關(guān)系,判斷拋物線開口向下,且能求得對(duì)稱軸的值,以及頂點(diǎn)M,又能求得點(diǎn)A,代入拋物線解析式即可;
(3)使得△OPN和△AMN相似,有兩種情況:一種是點(diǎn)P與點(diǎn)M不重合,則由
,根據(jù)(2)所求得的線段長(zhǎng)度從而求得點(diǎn)P的縱坐標(biāo),橫坐標(biāo)即為拋物線對(duì)稱軸,從而求得點(diǎn)P;另一種是點(diǎn)P與點(diǎn)M重合,即為點(diǎn)M坐標(biāo).
解答:解:(1)∵直線y=-2x+n(n>0)與x軸、y軸分別交于點(diǎn)A、B,
∴當(dāng)x=0時(shí),y=n即B(0,n);當(dāng)y=0時(shí),x=
即點(diǎn)A(
,0),
則OA=
,OB=n,
∴
=16,
解得n=±8.
∵n>0,
∴n=-8不符題意,舍去.
故n=8;
答:n=8.
(2)由頂點(diǎn)M在直線y=-2x+8上,可設(shè)點(diǎn)M(x,-2x+8).
由n=8,則點(diǎn)A(4,0),B(0,8).
∵拋物線y=ax
2+bx(a≠0)經(jīng)過原點(diǎn)及點(diǎn)A,且頂點(diǎn)M在直線y=-2x+8上,
∴a<0,對(duì)稱軸為
,即
,
把點(diǎn)A(4,0)代入y=ax
2+bx,得:16a+4b=0①,
把x=2代入y=-2x+8,得M(2,4),
把點(diǎn)M的坐標(biāo)代入拋物線解析式,得4a+2b=4②,
由①②解得:a=-1,b=4.
∴拋物線解析式為:y=-x
2+4x;
答:拋物線解析式為y=-x
2+4x.
(3)由題意設(shè)點(diǎn)P(2,y),則y=PN.
要使得△OPN和△AMN相似,
有兩種情況:
一種:點(diǎn)P不與點(diǎn)M重合,則
,
在Rt△MNA中,AN=4-2=2,MN=4,
代入
,解得y=1.
∴點(diǎn)P(2,1);
另一種:點(diǎn)P與點(diǎn)M重合.
則由題意可知點(diǎn)O與點(diǎn)A關(guān)于對(duì)稱軸對(duì)稱,
則△OPN≌△AMN,
∴△OPN∽△AMN,
∴點(diǎn)P(2,4).
∴點(diǎn)P坐標(biāo)為:(2,1)或(2,4).
另外:點(diǎn)P與點(diǎn)M關(guān)于X軸對(duì)稱點(diǎn)也可以,
∴點(diǎn)P坐標(biāo)為:(2,-1)或(2,-4).
答:點(diǎn)P坐標(biāo)為:(2,1)或(2,4)或(2,-1)或(2,-4).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用,其中涉及到了已知直線求線段的長(zhǎng)度,求拋物線解析式,以及動(dòng)點(diǎn)根據(jù)相似三角形對(duì)應(yīng)邊比相等求點(diǎn)的坐標(biāo).