已知:如圖,割線ABC與⊙O相交于B,C兩點(diǎn),E是
BC
的中點(diǎn),D是⊙O上一點(diǎn),若∠EDA=∠AMD.
求證:AD是⊙O的切線.
分析:連接OE交BC于點(diǎn)F,連接OD,利用垂徑定理,以及等邊對(duì)等角,即可證得:∠ODA=90°,從而證得AC是圓的切線.
解答:證明:連接OE交BC于點(diǎn)F,連接OD.
∵E是
BC
的中點(diǎn),
∴OE⊥BC,
∴∠E+∠EMF=90°,
∵∠EDA=∠AMD,
又∠AMD=∠EMF,
∴∠ADM+∠E=90°,
∵OE=OD,
∴∠FEM=∠ODE,
∴∠ODE+∠ADM=90°,即∠ODA=90°,
∴OD⊥AD,
∴AD是圓的切線.
點(diǎn)評(píng):本題考查了切線的判定.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,PA切⊙O于點(diǎn)A,割線PD交⊙O于點(diǎn)C、D,∠P=45°,弦AB⊥PD,垂足為E,且BE=2CE,DE=6,CF⊥PC,交DA的延長(zhǎng)線于點(diǎn)F.求tan∠CFE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知:如圖⊙O的割線PAB交⊙O于點(diǎn)A,B,PA=7cm,AB=5cm,PO=10cm,則⊙O的半徑是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,PA切⊙O于A點(diǎn),割線PCB交⊙O于C、B兩點(diǎn),D是線段BP上一點(diǎn),且PD2=PB•PC,直線AD交⊙O于E點(diǎn).
(1)求證:AD平分∠BAC;
(2)求證:AB•AC=AD•AE;
(3)若把題中條件“D是線段BP上一點(diǎn)”改為“D是線段BP延長(zhǎng)線上一點(diǎn)”(如圖2),則題(2)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直于AB于點(diǎn)F,交BC于點(diǎn)G,∠A=∠BCP.
求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知,如圖,⊙O直徑AB延長(zhǎng)線上一點(diǎn)P,割線PCD交⊙O于C,D. 弦DF⊥AB于H,CF交AB于E,DE⊥CF,∠P=15°,⊙O的半徑為2,則CF的大小為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案