(2008•無(wú)錫)如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

【答案】分析:(1)過C向x軸引垂線,利用三角函數(shù)求出相應(yīng)的橫縱坐標(biāo);
(2)⊙P與菱形OABC的邊所在直線相切,則可與OC相切;或與OA相切;或與AB相切,應(yīng)分情況探討.
解答:解:(1)過C作CD⊥x軸于D.
∵OA=1+t,
∴OC=1+t,
∴OD=OCcos60°=,DC=OCsin60°=
∴點(diǎn)C的坐標(biāo)為

(2)①當(dāng)⊙P與OC相切時(shí)(如圖1),切點(diǎn)為C,此時(shí)PC⊥OC.
∴OC=OPcos30°,
∴1+t=3•,
∴t=-1.

②當(dāng)⊙P與OA,即與x軸相切時(shí)(如圖2),則切點(diǎn)為O,PC=OP.
過P作PE⊥OC于E,則

∴t=3-1.

③當(dāng)⊙P與AB所在直線相切時(shí)(如圖3),設(shè)切點(diǎn)為F,PF交OC于G,則PF⊥OC.
∴FG=CD=,
∴PC=PF=OPsin30°+
過C作CH⊥y軸于H,則PH2+CH2=PC2
,
化簡(jiǎn),得(t+1)2-18(t+1)+27=0,
解得t+1=9
∵t=9,
∴t=9
∴所求t的值是,
點(diǎn)評(píng):四邊形所在的直線和圓相切,那么與各邊都有可能相切;
注意特殊三角函數(shù)以及勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2008•無(wú)錫)如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2008•無(wú)錫)如圖,已知E是矩形ABCD的邊CD上一點(diǎn),BF⊥AE于F,試說(shuō)明:△ABF∽△EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省無(wú)錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•無(wú)錫)如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省無(wú)錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•無(wú)錫)如圖,已知E是矩形ABCD的邊CD上一點(diǎn),BF⊥AE于F,試說(shuō)明:△ABF∽△EAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案