【題目】對于一元二次方程ax2+bx+c=0 (a≠0),下列說法中錯誤的是( 。
A. 當(dāng)a>0,c<0時,方程一定有實數(shù)根
B. 當(dāng)c=0時,方程至少有一個根為0
C. 當(dāng)a>0,b=0,c<0時,方程的兩根一定互為相反數(shù)
D. 當(dāng)abc<0時,方程的兩個根同號,當(dāng)abc>0時,方程的兩個根異號
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的外角∠CBD和∠BCE的平分線相交于點F,則下列結(jié)論正確的是( 。
A. 點F在BC邊的垂直平分線上 B. 點F在∠BAC的平分線上
C. △BCF是等腰三角形 D. △BCF是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成.
(1)要使所圍矩形豬舍的面積達(dá)到50m2,求豬舍的長和寬.
(2)農(nóng)戶想在現(xiàn)有材料的基礎(chǔ)上擴(kuò)建矩形豬舍面積達(dá)到60m2,小紅為該農(nóng)戶提出了一個意見:“為方便進(jìn)出,在垂直于住房墻的一邊留一個1m寬的門就行”,如圖2,請通過計算求小紅設(shè)計的豬舍的長和寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點在內(nèi),,,點在外,,.
(1)求的度數(shù);
(2)判斷的形狀并加以證明;
(3)連接,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,﹣1)
(1)求經(jīng)過B、E、C三點的二次函數(shù)的解析式;
(2)若經(jīng)過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設(shè)Q點的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時,求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形.例如:某三角形三邊長分別是5,6和8,因為,所以這個三角形是常態(tài)三角形.
(1)若三邊長分別是2,和4,則此三角形 常態(tài)三角形(填“是”或“不是” ;
(2)如圖,中,,,點為的中點,連接,若是常態(tài)三角形,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點A(﹣1,﹣2),4x+2<kx+b<0的解集為( 。
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道整數(shù)除以整數(shù)(其中),可以用豎式計算,例如計算可以用整式除法如圖:,所以.
類比此方法,多項式除以多項式一般也可以用豎式計算,步驟如下:
①把被除式,除式按某個字母作降冪排列,并把所缺的項用零補(bǔ)齊;
②用被除式的第一項除以除式第一項,得到商式的第一項;
③用商式的第一項去乘除式,把積寫在被除式下面(同類對齊),消去相等項;
④把減得的差當(dāng)作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時為止,被除式=除式×商式+余式,若余式為零,說明這個多項式能被另一個多項式整除.
例如:計算.
可用整式除法如圖:
所以除以
商式為,余式為0
根據(jù)閱讀材料,請回答下列問題:
(1) .
(2),商式為 ,余式為 .
(3)若關(guān)于的多項式能被三項式整除,且均為整數(shù),求滿足以上條件的的值及商式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC=8,BD=6,點E,F分別是邊AB,BC的中點,點P在AC上運動,在運動過程中,存在PE+PF的最小值,則這個最小值是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com