已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實數(shù));④(a+c)2<b2;⑤a>1.其中正確的項是( )

A.①⑤
B.①②⑤
C.②⑤
D.①③④
【答案】分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解答:解:①∵拋物線的開口向上,∴a>0,
∵與y軸的交點為在y軸的負半軸上,∴c<0,
∵對稱軸為x=>0,
∴a、b異號,即b<0,
又∵c<0,∴abc>0,
故本選項正確;

②∵對稱軸為x=>0,a>0,
-<1,
∴-b<2a,
∴2a+b>0;
故本選項錯誤;

③當x=1時,y1=a+b+c;
當x=m時,y2=m(am+b)+c,當m>1,y2>y1;當m<1,y2<y1,所以不能確定;
故本選項錯誤;

④當x=1時,a+b+c=0;
當x=-1時,a-b+c>0;
∴(a+b+c)(a-b+c)=0,即(a+c)2-b2=0,
∴(a+c)2=b2
故本選項錯誤;

⑤當x=-1時,a-b+c=2;
當x=1時,a+b+c=0,
∴a+c=1,
∴a=1+(-c)>1,即a>1;
故本選項正確;
綜上所述,正確的是①⑤.
故選A.
點評:本題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉(zhuǎn)換;二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:
(1)a由拋物線開口方向確定:開口方向向上,則a>0;否則a<0;
(2)b由對稱軸和a的符號確定:由對稱軸公式x=判斷符號;
(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>0;否則c<0;
(4)b2-4ac由拋物線與x軸交點的個數(shù)確定:2個交點,b2-4ac>0;1個交點,b2-4ac=0,沒有交點,b2-4ac<0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:二次函數(shù)的表達式為y=2x2+4x-1.
(1)設這個函數(shù)圖象的頂點坐標為P,與y軸的交點為A,求P、A兩點的坐標;
(2)將二次函數(shù)的圖象向上平移1個單位,設平移后的圖象與x軸的交點為B、C(其中點B在點C的左側),求B、C兩點的坐標及tan∠APB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標是(-2,0),點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OC<OB)是方程x2-10x+24=0的兩個根.
(1)求B、C兩點的坐標;
(2)求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:二次函數(shù)y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個二次函數(shù)的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與y軸精英家教網(wǎng)交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3
;
(2)求出這個二次函數(shù)的解析式;
(3)當0<x<3時,則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習冊答案