已知,如圖,A,B分別在x軸和y軸上,且OA=2OB,直線y1=kx+b經(jīng)過A點與拋物線y2=-x2+2x+3交于B,C兩點,
(1)試求k,b的值及C點坐標;
(2)x取何值時y1,y2均隨x的增大而增大;
(3)x取何值時y1>y2.
(1),
,C(
,
);(2)x<1;(3)x<0或x>
【解析】
試題分析:(1)把x=0代入拋物線的解析式即可得到B點坐標,再根據(jù)OA=2OB可得A點的坐標,再根據(jù)待定系數(shù)法即可求得一次函數(shù)解析式,再求得一次函數(shù)和拋物線的交點,即得C點的坐標;
(2)先把二次函數(shù)配方為頂點式,再結(jié)合二次函數(shù)的圖象即可作出判斷;
(3)根據(jù)兩個圖象的交點坐標再結(jié)合兩個的圖象的特征即可作出判斷.
(1)令x=0,將其代入拋物線的解析式,得:y2=3,
故B點坐標為(0,3),
∵OA=2OB,
∴A點的坐標為(-6,0),
將A和B兩點的坐標代入一次函數(shù)解析式得:,
解得:,
∴直線的函數(shù)解析式為:y1=x+3,
C點的坐標為一次函數(shù)和拋物線的交點,將兩個解析式聯(lián)立求得C點的坐標為(,
);
(2)拋物線y2=-x2+2x+3=-(x-1)2+4,可知其對稱軸為x=1,
若y1,y2均隨x的增大而增大,則x<1;
(3)由題給圖形可知,當y1>y2時,x<0或x>.
考點:二次函數(shù)的性質(zhì)
點評:二次函數(shù)的性質(zhì)是初中數(shù)學的重點,是中考中極為常見的知識點,非�;A(chǔ),需熟練掌握.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com