如圖,已知拋物線y=x2+bx+c經(jīng)過A(3,0)、B(0,4)兩點.

(1)求此拋物線的解析式;

(2)若拋物線與x軸的另一個交點為C,求點C關(guān)于直線AB的對稱點C'的坐標(biāo);

(3)若點D是第二象限內(nèi)點,以D為圓心的圓分別與x軸、y軸、直線AB相切于點E、F、H,問在拋物線的對稱軸上是否存在一點一點P,使得|PH-PA|的值最大?若存在,求出該最大值;若不存在,請說明理由.

答案:
解析:

  解:(1)由題意得:, 2分

  解得:. 3分

  ∴拋物線解析式為y=x2x+4. 4分

  (2)令y=0,得:x2x+4=0.

  解得:x1=1,x2=3.

  ∴C點坐標(biāo)為(1,0). 5分

  作CQ⊥AB,垂足為Q,延長CQ,使CQ=C'Q,

  則點C'就是點C關(guān)于直線AB的對稱點.

  由△ABC的面積得:CQ·AB=CA·OB,

  ∵AB==5,

  CA=2, 6分

  作C'T⊥x軸,垂足為T,則△CTC'∽△BOA

  ∴, 8分

  ∴C'T=,CT=

  ∴OT=1+∴C'點的坐標(biāo)為() 9分

  (3)設(shè)⊙D的半徑為r,∴AE=r+3,BF=4-r,HB=BF=4-r.

  ∵AB=5,且AE=AH,

  ∴r+3=5+4-r,∴r=3. 10分

  HB=4-3=1.

  作HN⊥y軸,垂足為N,則,,

  ∴HN=,BN=,∴H點坐標(biāo)為(-). 11分

  根據(jù)拋物線的對稱性,得PA=PC,

  ∵|PH-PA|=|PH-PC|≤HC,

  ∴當(dāng)H、C、P三點共線時,|PH-PC|最大.

  ∵HC=,

  ∴|PH-PA|的最大值為. 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.

(1)求a的值;

(2)當(dāng)四邊形ODPQ為矩形時,求這個矩形的面積;

(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

(4)當(dāng)t為何值時,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考模擬數(shù)學(xué)卷 題型:解答題

(本題9分)如圖,已知拋物線yax2bx+3的圖象與x軸交于A、B兩點,與y軸交于點C,且點C、D是拋物線上的一對對稱點.

【小題1】(1)求拋物線的解析式;
【小題2】(2)求點D的坐標(biāo),并在圖中畫出直線BD;
【小題3】(3)求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時,上述二次函數(shù)的值大于該一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州工業(yè)園區(qū)九年級下學(xué)期學(xué)科調(diào)研數(shù)學(xué)卷 題型:解答題

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省興平市九年級上學(xué)期期末練習(xí)數(shù)學(xué)卷 題型:解答題

(本題滿分10分)

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(—1,0)、C(0,—3)兩點,與x軸交于另一點B.

1.(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;

2.(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo);

3.(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標(biāo).

 

 

查看答案和解析>>

同步練習(xí)冊答案