(2006•河北)如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向點(diǎn)C以每秒3個(gè)單位長的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B以每秒4個(gè)單位長的速度運(yùn)動.P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.在運(yùn)動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運(yùn)動時(shí)間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時(shí),四邊形PQBA是梯形;
(3)是否存在時(shí)刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時(shí)刻t,使得PD⊥AB?若存在,請估計(jì)t的值在括號中的哪個(gè)時(shí)間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

【答案】分析:(1)根據(jù)折疊的性質(zhì)可知:四邊形PCQD的面積等于△PCQ的面積的2倍,因此本題只需計(jì)算三角形PCQ的面積即可.可用t表示出PC和QB的長,然后根據(jù)三角形的面積公式即可得出三角形PCQ的面積與t的函數(shù)關(guān)系式,進(jìn)而可求出y,t的函數(shù)關(guān)系式;
(2)如果四邊形PQBA是梯形,那么只有一種情況,即PQ∥AB,可根據(jù)這兩條平行線得出的關(guān)于CP,CA,CQ,CB的比例關(guān)系式求出此時(shí)t的值;
(3)可通過構(gòu)建相似三角形來求解.延長PD交BC于M,通過相似三角形QMD和三角形ABC得出的關(guān)于OD,QM,AC,AB的比例關(guān)系式,可得出QM的表達(dá)式,然后根據(jù)PD∥AB得出的關(guān)于CP,CA,CM,CB的比例關(guān)系式求出t的值.
(4)可延長PD交AB于H,過Q作QR⊥AB于R.在直角三角形ARH中,AP=3t,因此AH=t,而HR=DQ=CQ=4t,在直角三角形BQR中,BQ=16-4t,因此BR=.由于AB=20.因此t+4t+=20,解得t=.因此存在時(shí)刻t使得PD⊥AB.
解答:解:(1)由題意知CQ=4t,PC=12-3t,
∴S△PCQ=PC•CQ=-6t2+24t.
∵△PCQ與△PDQ關(guān)于直線PQ對稱,
∴y=2S△PCQ=-12t2+48t.

(2)當(dāng)時(shí),有PQ∥AB,而AP與BQ不平行,這時(shí)四邊形PQBA是梯形,
∵CA=12,CB=16,CQ=4t,CP=12-3t,
,
解得t=2.
∴當(dāng)t=2秒時(shí),四邊形PQBA是梯形.

(3)設(shè)存在時(shí)刻t,使得PD∥AB,延長PD交BC于點(diǎn)M,如圖,
若PD∥AB,則∠QMD=∠B,
又∵∠QDM=∠C=90°,
∴Rt△QMD∽Rt△ABC,
從而,
∵QD=CQ=4t,AC=12,
AB==20,
∴QM=
若PD∥AB,則,

解得t=
∴當(dāng)t=秒時(shí),PD∥AB.

(4)存在時(shí)刻t,使得PD⊥AB.
時(shí)間段為:2<t≤3.
延長PD交AB于H,過Q作QR⊥AB于R.在直角三角形APH中,
∵AP=3t,
∴AH=t,而HR=DQ=CQ=4t,
在直角三角形BQR中,
∵BQ=16-4t,
∴BR=
∵AB=20.
t+4t+=20,解得t=
∴存在時(shí)刻t使得PD⊥AB.

點(diǎn)評:[點(diǎn)評]本題是一道動態(tài)幾何題,綜合性較強(qiáng),區(qū)分度較大,有一定的難度.
【命題意圖】最后總是函數(shù)的應(yīng)用,去年是一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用以及分類討論,其實(shí)對初中而言,一次函數(shù)和二次函數(shù)的重要性是一樣的,關(guān)鍵是函數(shù)思想的確立,函數(shù)模型的建立.本題考查求解二次函數(shù)關(guān)系式、并利用關(guān)系式求值的運(yùn)算技能和從情景中提取信息、解釋信息、解決問題的能力,同時(shí)考查的數(shù)學(xué)思想主要是數(shù)學(xué)建模思想.本題在呈現(xiàn)方式上做出了創(chuàng)新,試題貼近社會經(jīng)濟(jì)的盈虧問題,賦予了生活氣息,使學(xué)生真切地感受到“數(shù)學(xué)來源于生活”,體驗(yàn)到數(shù)學(xué)的“有用性”.這樣設(shè)計(jì)體現(xiàn)了《新課程標(biāo)準(zhǔn)》的“問題情景-建立模型-解釋、應(yīng)用和拓展”的數(shù)學(xué)學(xué)習(xí)模式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•河北)如圖所示,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的點(diǎn)P處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鹽城市鹽城中學(xué)初三年級中考模擬數(shù)學(xué)試卷2(解析版) 題型:解答題

(2006•河北)如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向點(diǎn)C以每秒3個(gè)單位長的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B以每秒4個(gè)單位長的速度運(yùn)動.P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.在運(yùn)動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運(yùn)動時(shí)間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時(shí),四邊形PQBA是梯形;
(3)是否存在時(shí)刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時(shí)刻t,使得PD⊥AB?若存在,請估計(jì)t的值在括號中的哪個(gè)時(shí)間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•河北)如圖是由邊長為1m的正方形地磚鋪設(shè)的地面示意圖,小明沿圖中所示的折線從A?B?C所走的路程為    m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•河北)如圖是華聯(lián)商廈某個(gè)月甲、乙、丙三種品牌彩電的銷售量統(tǒng)計(jì)圖,則甲、丙兩種品牌彩電該月的銷售量之和為( )

A.50臺
B.65臺
C.75臺
D.95臺

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•河北)如圖,在四邊形ABCD中,AB=CD,BC=AD,若∠A=110°,則∠C=    度.

查看答案和解析>>

同步練習(xí)冊答案