如圖,經(jīng)過原點的拋物線軸的另一個交點為A.過點作直線軸于點M,交拋物線于點B.記點B關(guān)于拋物線對稱軸的對稱點為C(B、C不重合).連結(jié)CB,CP。

(1)當(dāng)時,求點A的坐標(biāo)及BC的長;
(2)當(dāng)時,連結(jié)CA,問為何值時CA⊥CP?
(3)過點P作PE⊥PC且PE=PC,問是否存在,使得點E落在坐標(biāo)軸上?若存在,求出所有滿足要求的的值,并寫出相對應(yīng)的點E坐標(biāo);若不存在,請說明理由。

(1)A(6,0),BC=4(2)(3)存在,當(dāng)m=2時,點E的坐標(biāo)是(0,2)或(0,4),
當(dāng)m=時,點E的坐標(biāo)是(,0)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小明將她家鄉(xiāng)的拋物線型彩虹橋按比例縮小后,繪制成如下圖所示的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點,左右兩條拋物線關(guān)于y軸對稱,經(jīng)過測算,右邊拋物線的表達式為y=-
120
(x-30)2+5

精英家教網(wǎng)
(1)直接寫出左邊拋物線的解析式;
(2)求拋物線彩虹橋的總跨度AB的長;
(3)若三條鋼梁的頂點M、E、N與原點O連成的四邊形OMEN是菱形,你能求出鋼梁最高點離橋面的高度OE的長嗎?如果能,請寫出過程;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為3
2
,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省江陰市顧山九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.如圖,10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的內(nèi)接格點三角形.以O為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是

A13?????? B14? ???? C15?????? D16

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,經(jīng)過點A(0,-4)的拋物線y=x2+bx+c與x軸相交于點B(-0,0)和C,O為坐標(biāo)原點.

(1)求拋物線的解析式;

(2)將拋物線y=x2+bx+c向上平移個單位長度、再向左平移m(m>0)個單位長度,得到新拋物

線.若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;

(3)設(shè)點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

 

查看答案和解析>>

同步練習(xí)冊答案