15、一個(gè)正整數(shù)若能表示為兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為“智慧數(shù)”,比如16=52-32,16就是一個(gè)“智慧數(shù)”.在正整數(shù)中從1開(kāi)始數(shù)起,試問(wèn)第1998個(gè)“智慧數(shù)”是哪個(gè)數(shù)?并請(qǐng)你說(shuō)明理由.
分析:如果一個(gè)數(shù)是智慧數(shù),就能表示為兩個(gè)正整數(shù)的平方差,設(shè)這兩個(gè)數(shù)分別m、n,設(shè)m>n,即智慧數(shù)=m2-n2=(m+n)(m-n),因?yàn)閙,n是正整數(shù),因而m+n和m-n就是兩個(gè)自然數(shù).要判斷一個(gè)數(shù)是否是智慧數(shù),可以把這個(gè)數(shù)分解因數(shù),分解成兩個(gè)整數(shù)的積,看這兩個(gè)數(shù)能否寫成兩個(gè)正整數(shù)的和與差.
解答:解:1不能表示為兩個(gè)正整數(shù)的平方差,所以1不是“智慧數(shù)”.對(duì)于大于1的奇正整數(shù)2k+1,有2k+1=(k+1)2-k2(k=1,2,…).所以大于1的奇正整數(shù)都是“智慧數(shù)”.
對(duì)于被4整除的偶數(shù)4k,有4k=(k+1)2-(k-1)2(k=2,3,…).
即大于4的被4整除的數(shù)都是“智慧數(shù)”,而4不能表示為兩個(gè)正整數(shù)平方差,所以4不是“智慧數(shù)”.
對(duì)于被4除余2的數(shù)4k+2(k=0,1,2,3,…),設(shè)4k+2=x2-y2=(x+y)(x-y),其中x,y為正整數(shù),
當(dāng)x,y奇偶性相同時(shí),(x+y)(x-y)被4整除,而4k+2不被4整除;
當(dāng)x,y奇偶性相異時(shí),(x+y)(x-y)為奇數(shù),而4k+2為偶數(shù),總得矛盾.
所以不存在自然數(shù)x,y使得x2-y2=4k+2.即形如4k+2的數(shù)均不為“智慧數(shù)”.
因此,在正整數(shù)列中前四個(gè)正整數(shù)只有3為“智慧數(shù)”,此后,每連續(xù)四個(gè)數(shù)中有三個(gè)“智慧數(shù)”.
因?yàn)?998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996個(gè)“智慧數(shù)”,2665是第1997個(gè)“智慧數(shù)”,
注意到2666不是“智慧數(shù)”,
因此2667是第1998個(gè)“智慧數(shù)”,
即第1998個(gè)“智慧數(shù)”是2667.
點(diǎn)評(píng):本題主要考查了平方差公式,有一定的難度,主要是對(duì)題中新定義的理解與把握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、若一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.如4=22-02,12=42-22,20=62-42,因此4,12,20這三個(gè)數(shù)都是神秘?cái)?shù)
(1)28和76是神秘?cái)?shù)嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k+2和2k(k為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)成的神秘?cái)?shù)是4的倍數(shù)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正整數(shù)若能表示成兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為“楊敏數(shù)”.例如,16=52-32就是一個(gè)“楊敏數(shù)”.則把所有的“楊敏數(shù)”從小到大排列后,第47個(gè)“楊敏數(shù)”是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

一個(gè)正整數(shù)若能表示成兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為“楊敏數(shù)”.例如,16=52-32就是一個(gè)“楊敏數(shù)”.則把所有的“楊敏數(shù)”從小到大排列后,第47個(gè)“楊敏數(shù)”是


  1. A.
    97
  2. B.
    95
  3. C.
    64
  4. D.
    65

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)正整數(shù)若能表示為兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為“智慧數(shù)”,比如16=52-32,16就是一個(gè)“智慧數(shù)”.在正整數(shù)中從1開(kāi)始數(shù)起,試問(wèn)第1998個(gè)“智慧數(shù)”是哪個(gè)數(shù)?并請(qǐng)你說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案