【題目】如圖,梯形的上底為+2-10,下底為3-5-80,高為40.(3)

(1)用式子表示圖中陰影部分的面積;

(2)當=10時,求陰影部分面積的值。

【答案】(1)、74a2﹣60a﹣1800;(2)、5000.

【解析】試題分析:(1)、陰影部分的面積=梯形的面積-半圓的面積,然后用代數(shù)式進行表示出來,然后進行合并同類項化簡;(2)、將a的值代入化簡后的式子進行計算.

試題解析:(1)、梯形的上底為a2+2a﹣10,下底為3a2﹣5a﹣80,高為40,半圓的直徑為4a,

陰影部分的面積=a2+2a﹣10+3a2﹣5a﹣80×40﹣π2,

=80a2﹣60a﹣1800﹣2a2π,

=80a2﹣60a﹣1800﹣2a2×3,

=74a2﹣60a﹣1800;

(2)、當a=10時,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知:|a|=3,b2=4,ab<0,求a﹣b的值.

(2)已知關于x的方程=與方程=3y﹣2的解互為倒數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大。|(zhì)地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是矩形ABCDAD邊上一個動點,矩形的兩條邊AB、BC長分別是68,則點P到矩形的兩條對角線距離之和PE+PF是(

A. 4.8 B. 5 C. 6 D. 7.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求經(jīng)過點C的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.

(1)要使這兩個正方形的面積之和等于17cm2,那么這段鐵絲剪成兩段后的長度分別是多少?

(2)兩個正方形的面積之和可能等于12cm2? 若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:AD是△ABC的中線, MBC邊上任意一點(不與點D重合),過點M作一直線,使其等分△ABC的面積.

他的做法是:如圖1,連結AM,過點DDN//AMAC于點N,作直線MN,直線MN即為所求直線.

請你參考小明的做法,解決下列問題:

(1)如圖2, AE等分四邊形ABCD的面積,MCD邊上一點,過M直線MN,使其等分四邊形ABCD的面積(要求:在圖2中畫出直線MN,并保留作圖痕跡);

(2)如圖3,求作過點A的直線AE,使其等分四邊形ABCD的面積(要求:在圖3中畫出直線AE,并保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式Ax2+3xyxB=2x2xy+4y-1

(1)xy=-2時,求2AB的值;

(2)2AB的值與y的取值無關,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

同步練習冊答案