如圖,已知二次函數(shù)y=
12
x2+bx+c的圖象與x軸只有一個(gè)公共點(diǎn)M,與y軸的交點(diǎn)為A,精英家教網(wǎng)過(guò)點(diǎn)A的直線y=x+c與x軸交于點(diǎn)N,與這個(gè)二次函數(shù)的圖象交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo)(用含b、c的式子表示);
(2)當(dāng)S△BMN=4S△AMN時(shí),求二次函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使得以P、A、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)連接直線AB與拋物線的解析式即可得出A、B的坐標(biāo).
(2)根據(jù)等高三角形的面積比等于底邊比,可知:B點(diǎn)的縱坐標(biāo)是A點(diǎn)縱坐標(biāo)的4倍.已知拋物線與x軸只有一個(gè)交點(diǎn),即△=0,可得出另外一個(gè)關(guān)于b,c的關(guān)系式,聯(lián)立兩個(gè)關(guān)系式即可求得b,c的值.也就能求出二次函數(shù)的解析式.
(3)本題要分情況進(jìn)行討論:
①PM=AM,那么將M點(diǎn)的坐標(biāo)向左或向右平移AM個(gè)單位即可得出P點(diǎn)的坐標(biāo).
②PA=AM,P點(diǎn)在AM的垂直平分線上,易知:M(2,0),A(0,2)因此三角形OMA是等腰直角三角形,O在AM的垂直平分線上,因此P,O重合,P點(diǎn)坐標(biāo)即為原點(diǎn)坐標(biāo).
③PA=AM,P,M關(guān)于y軸對(duì)稱,據(jù)此可求出P點(diǎn)的坐標(biāo).
綜上所述可得出符合條件的P點(diǎn)的坐標(biāo).
解答:精英家教網(wǎng)解:(1)
y=
1
2
x2+bx+c(1)
y=x+c(2)

x1=0,x2=2-2b
當(dāng)x1=0時(shí),y1=c即A(0,c)
當(dāng)x2=2-2b時(shí),y2=2-2b+c
即B(2-2b,2-2b+c);

(2)2-2b-3c=0,△=0
得b2-2c=0,
聯(lián)立③,④得
(6+2)(36-2)=0
∴b1=-2,b2=
2
3

-
b
2a
>0,而a=
1
2
>0.
∴b<0.
∴b=-2
當(dāng)b=-2時(shí),代入④得c=2
∴所求二次函數(shù)的解析式為:y=
1
2
x2-2x+2;

(3)存在符合條件的點(diǎn)P
Pl(2+2
2
,0),P2(0,0),P3(2-2
2
,0),P4(-2,0).
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的確定、函數(shù)圖象的交點(diǎn)、等腰三角形的判定等知識(shí)點(diǎn).
在不確定等腰三角形的腰和底的情況下要分類討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案