如圖所示,在?ABCD中,AC為對角線,AE⊥BC,CF⊥AD,垂足分別為E,F(xiàn),則圖中的全等三角形共( )

A.4對
B.3對
C.2對
D.5對
【答案】分析:已知四邊形ABCD是平行四邊形,可得出BA=CD、AD=BC、AF=CE、AE=CF,∠DAC=∠BCA、∠B=∠D、∠BAC=∠DCA;可根據(jù)這些條件進行判斷.
由∠B=∠D、AB=CD、∠AEB=∠CFD=90°,可推出△ABE≌△FCD;(AAS)
由AC=AC、∠ABC=∠CDA、∠ACB=∠CAD,可得出△ABC≌△DCA;(AAS)
由AC=AC、AE=FC、AF=EC,可得出△AFC≌△AEC;(SAS).
因此共有3對全等三角形.
解答:解:∵四邊形ABCD是平行四邊形
∴AB=CD,AD=BC,∠B=∠D,AD∥BC,AB∥CD
∴∠DAC=∠BCA,∠BAC=∠DCA
∵∠B=∠D、AB=CD、∠AEB=∠CFD=90°
∴△ABE≌△FCD①
∵AC=AC、∠ABC=∠CDA、∠ACB=∠CAD
∴△ABC≌△DCA②
∵AC=AC、AE=FC、AF=EC
∴△AFC≌△AEC③
因此共有3對全等三角形.
故選B.
點評:本題考查的是平行四邊形的性質(zhì)和全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案