已知:如圖所示,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:
證明:連接OC.
∵OA=OC,
∴∠A=∠1.
∵CD切⊙O于C點,
∴∠OCD=90°.
∴∠1+∠2=90°.
∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°.
∴∠2=∠Q.∴DQ=DC.
即△CDQ是等腰三角形
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
AE |
DE |
AE |
DE |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com