已知:如圖所示,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:

證明:連接OC.

∵OA=OC,

∴∠A=∠1.

∵CD切⊙O于C點,

∴∠OCD=90°.

∴∠1+∠2=90°.

∴∠A+∠2=90°.

在Rt△QPA中,∠QPA=90°,

∴∠A+∠Q=90°.

∴∠2=∠Q.∴DQ=DC.

即△CDQ是等腰三角形

問題:對上述命題,當點P在BA的延長線上時,其他條件不變,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

答案:略
解析:

CDQ是等腰三角形成立,(證明略)


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、已知:如圖所示,AB∥CD∥EF,BC∥AD,AC平分∠BAD,則圖中與∠ACB相等的角有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、已知:如圖所示,AB∥CD,BC∥DE,那么∠B+∠D=
180
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖所示,AB∥DE,AB=DE,AF=DC.
(1)寫出圖中你認為全等的三角形(不再添加輔助線);
(2)選擇你在(1)中寫出的全等三角形中的任意一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•孝南區(qū)一模)已知,如圖所示,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交于⊙O于點E,∠BAC=45°,給出以下四個結論:
①BD=CD;②∠EBC=22.5°;③AE=2EC;④
AE
=2
DE
AE
,
DE
為劣弧)
其中正確結論有( 。

查看答案和解析>>

同步練習冊答案