【題目】已知拋物線Lyx2+bx+c經(jīng)過點M2,﹣3),與y軸交于點C0,﹣3).

1)求拋物線L的表達(dá)式;

2)試判斷拋物線Lx軸交點的情況;

3)平移該拋物線,設(shè)平移后的拋物線為L,拋物線L的頂點記為P,它的對稱軸與x軸交于點Q,已知點N2,﹣8),怎樣平移才能使得以M、N、PQ為頂點的四邊形為菱形?

【答案】1yx22x3;(2)拋物線Lx軸有兩個不同的交點;(3)將原拋物線先向左平移3個單位,再向下平移1個單位,可得到符合條件的拋物線L

【解析】

1)將MC兩點的坐標(biāo)代入y=-x2+bx+c,根據(jù)待定系數(shù)法即可解答;

2)利用一元二次方程的根的判別式即可解答;

3)先確定M2,-3)、N2,-8),則當(dāng)PQ=MN=5時,四邊形MNPQ為平行四邊形.設(shè)點Qm0),則P點的坐標(biāo)為(m,-5),根據(jù)菱形的性質(zhì)得到PN=MN=5,故(m-22+-5+82=52,即點P的坐標(biāo)為(6,-5)或(-2,-5),最后就兩個頂點分別根據(jù)平移規(guī)律解答即可.

解:(1)拋物線Lyx2+bx+c經(jīng)過點M2,﹣3),點C0,﹣3).

代入得

解得,

∴拋物線L的表達(dá)式為:yx22x3

2)令x22x30,則b24ac=(﹣224×1×(﹣3)=160

∴拋物線Lx軸有兩個不同的交點;

3)由題意得,M2,﹣3),N2,﹣8),

MNy軸,MN5,

PQMNy軸,

∴當(dāng)PQMN5時,四邊形MNPQ為平行四邊形.

設(shè)點Qm,0),則P點的坐標(biāo)為(m,﹣5),

要使得以M、N、PQ為頂點的四邊形為菱形,

只需PNMN5,

∴(m22+(﹣5+8252,

解得m16,m2=﹣2,

∴點P的坐標(biāo)為(6,﹣5)或(﹣2,﹣5).

yx22x3=(x124

∴拋物線L的頂點坐標(biāo)為(1,﹣4),

∴①當(dāng)點P的坐標(biāo)為(6,﹣5)時,651,﹣5﹣(﹣4)=﹣1,

∴將原拋物線先向右平移5個單位,再向下平移1個單位,可得到符合條件的拋物線L;

②當(dāng)點P的坐標(biāo)為(﹣2,﹣5)時,﹣21=﹣3,﹣5﹣(﹣4)=﹣1,

∴將原拋物線先向左平移3個單位,再向下平移1個單位,可得到符合條件的拋物線L

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為霧霾知多少的專題調(diào)查括動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A.非常了解B.比較了解、C.基本了解、D.不太了解四個等級,將所得數(shù)據(jù)進(jìn)行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題

等級

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   ,n   

2)扇形統(tǒng)計圖中,A部分所對應(yīng)的扇形的圓心角是   °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是   ;

3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中比較了解人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解全校學(xué)生參加社會實踐活動情況,隨機(jī)調(diào)查了部分學(xué)生一學(xué)期參加社會實踐活動的時間(單位:天),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖(1)和圖 2. 請根據(jù)圖中提供的信息,回答下列問題:

1 本次隨機(jī)調(diào)查的學(xué)生人數(shù)是_______,圖(1)中m的值是_______

2)求調(diào)查獲取的學(xué)生社會實踐活動時間樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

3)該校有480名學(xué)生,根據(jù)獲取的社會實踐活動時間樣本數(shù)據(jù),估計該校一學(xué)期社會實踐活動時間大于10 天的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸于點,現(xiàn)將直線繞點順時針方向旋轉(zhuǎn)45°軸于點,則直線的函數(shù)表達(dá)式是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) (為常數(shù)),當(dāng)自變量的值滿足,與其對應(yīng)的函數(shù)值的最大值為-1,的值為( )

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在四等分的圓形轉(zhuǎn)盤上依次標(biāo)有“0元”、“10元”、“30元”、“50元”字樣,購物每滿300元可以轉(zhuǎn)動轉(zhuǎn)盤2次,每次轉(zhuǎn)盤停下后,顧客可以獲得指針?biāo)竻^(qū)域相應(yīng)金額的購物券(指針落在分界線上不計次數(shù),需要再次轉(zhuǎn)動轉(zhuǎn)盤一次,直到指針沒有落在分界線上),一個顧客剛好消費300元,并參加促銷活動,轉(zhuǎn)了2次轉(zhuǎn)盤.

1)請你用畫樹形圖法或列表法,求出該顧客兩次獲得購物券金額和的所有可能結(jié)果;

2)求出該顧客兩次獲得購物金額和不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時,為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖中兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

2)戶外活動時間為0.5小時的人數(shù)是________,表示戶外活動時間為2小時的扇形圓心角的度數(shù)是________并補(bǔ)全條形統(tǒng)計圖;

3)本次調(diào)查中學(xué)生參加戶外活動的平均時間是否符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若干個半徑為個單位長度,圓心角是扇形按圖中的方式擺放,動點從原點出發(fā),沿著半徑半徑半徑...”的曲線運動,若點在線段上運動的速度為每秒個單位長度,在弧線上運動的速度為每秒個單位長度,設(shè)第秒運動到點(為自然數(shù)),則的坐標(biāo)是___________________的坐標(biāo)是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線都與直線l垂直垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l,且點C位于點M將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,y關(guān)于x的函數(shù)圖象大致為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案