分析 先根據(jù)∠3=∠4,∠5=∠6,求得∠ECF=∠3+∠5=$\frac{1}{2}$×180°=90°即可,再根據(jù)∠ACD是△ABC的外角,∠6是△BCF的外角,即可求得∠F=$\frac{1}{2}$∠ACD-$\frac{1}{2}$∠ABC=$\frac{1}{2}$(∠ACD-∠ABC)=$\frac{1}{2}$×∠A.
解答 解:∵∠3=∠4,∠5=∠6,
∴∠ECF=∠3+∠5=$\frac{1}{2}$∠ACB+$\frac{1}{2}$∠ACD=$\frac{1}{2}$×180°=90°.
∵∠ACD是△ABC的外角,
∴∠A=∠ACD-∠ABC,
∵∠6是△BCF的外角,
∴∠F=∠6-∠2,
又∵∠1=∠2,∠5=∠6,
∴∠F=$\frac{1}{2}$∠ACD-$\frac{1}{2}$∠ABC=$\frac{1}{2}$(∠ACD-∠ABC)=$\frac{1}{2}$×∠A=30°.
點評 本題主要考查了三角形的外角性質(zhì)以及三角形內(nèi)角和定理的運用,解題時注意:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com