【題目】如圖,在△ABC中,∠ACB=90°,AB=10,AC=6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ACCB運(yùn)動(dòng),在邊AC上以每秒3個(gè)單位長度的速度運(yùn)動(dòng),在邊BC上以每秒4個(gè)單位長度的速度運(yùn)動(dòng),到點(diǎn)B停止,當(dāng)點(diǎn)P不與△ABC的頂點(diǎn)重合時(shí),過點(diǎn)P作其所在直角邊的垂線交AB于點(diǎn)Q;以Q為直角頂點(diǎn)向PQ右側(cè)作RtPQD,且QD=PQ.設(shè)△PQD與△ABC重疊部分圖形的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)

1)當(dāng)點(diǎn)P在邊AC上時(shí),求PQ的長(t的代數(shù)式表示)

2)點(diǎn)D落在邊BC上時(shí),求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)設(shè)PD的中點(diǎn)為E,作直線CE.當(dāng)直線CE將△PQD的面積分成15兩部分時(shí),直接寫出t的值.

【答案】1PQ=4t;(2t=;(3S=;(4

【解析】

1)由PQBC,推出△APQ∽△ACB,可得 ,由此構(gòu)建關(guān)系式即可解決問題.

2)當(dāng)點(diǎn)D落在BC上時(shí),四邊形PCDQ是矩形,根據(jù)PC=DQ,構(gòu)建方程解決問題即可.

3)分三種情形:如圖31中,當(dāng)0t時(shí),重疊部分是△PQD如圖32中,當(dāng)t2時(shí),重疊部分是四邊形PQMN如圖33中,當(dāng)2t4時(shí),重疊部分是△PQN,分別求解即可.

4)分兩種情形:如圖41中,設(shè)直線CEDQN,連接OE.當(dāng)QN=2DN時(shí),直線CE將△PQD的面積分成15兩部分.如圖42中,如圖42中,設(shè)直線CEPQN,連接OE,延長QDCEM.當(dāng)QN=2PN時(shí),直線CE將△PQD的面積分成15兩部分,分別求解即可.

解:(1)如圖1中,當(dāng)點(diǎn)PAC上時(shí),

RtABC中,∵∠C=90°,AB=10AC=6,

BC==8

PQBC,∴△APQ∽△ACB,

,

PQ=4t

2)當(dāng)點(diǎn)D落在BC上時(shí),四邊形PCDQ是矩形,∴PC=DQ

PQ=4tDQ=PQ,

DQ=6t

63t=6t,

解得:t=

3如圖31中,當(dāng)0t時(shí),重疊部分是△PQD

S=PQDQ=×4t×6t=12t2

如圖32中,當(dāng)t2時(shí),重疊部分是四邊形PQMN,

S=SPQDSDMN=12t2×(9t6)×9t6=15t2+36t12

如圖33中,當(dāng)2t4時(shí),重疊部分是△PQN,

由題意PC=4t2),PB=BCPC=164t=44t),

PQ=34t),DQ=4t).

PBDQ,∴PNDN=PBDQ=89,

S=SPQD=34t4t=4t2

綜上所述:

4如圖41中,設(shè)直線CEDQN,連接OE

當(dāng)QN=2DN時(shí),直線CE將△PQD的面積分成15兩部分.

PE=DE,PCDN

,∴PC=DN

QN=2PC,DQ=3PC,

6t=363t),

t=

如圖42中,如圖42中,設(shè)直線CEPQN,連接OE,延長QDCEM

當(dāng)QN=2PN時(shí),直線CE將△PQD的面積分成15兩部分.

PCQM,PE=ED,

, ,

PC=DM=4t2),QM=2PC,

4t+4t2=2×4t2),

解得:t=

綜上所述:滿足條件的t的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角坐標(biāo)系中△ABC的頂點(diǎn)A、BC三點(diǎn)坐標(biāo)為A(7,1),B(8,2),C(9,0)

1)請(qǐng)?jiān)趫D中畫出△ABC的一個(gè)以點(diǎn)P(120)為位似中心,相似比為3的位似圖形△A'B'C'(要求與△ABCP點(diǎn)同一側(cè));

2)直接寫出A'點(diǎn)的坐標(biāo);

3)直接寫出△A'B'C'的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值是一一對(duì)應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can).

如圖(1)在中,,底角的鄰對(duì)記作,這時(shí),容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義解下列問題:

1= ;

2)如圖(2),在中,,,,求的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,我國海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動(dòng),堅(jiān)決把“洋垃圾”拒于國門之外如圖,某天我國一艘海監(jiān)船巡航到港口正西方的處時(shí),發(fā)現(xiàn)在的北偏東方向,相距海里處的點(diǎn)有一可疑船只正沿方向行駛,點(diǎn)在港口的北偏東方向上,海監(jiān)船向港口發(fā)出指令,執(zhí)法船立即從港口沿方向駛出,在處成功攔截可疑船只,此時(shí)點(diǎn)與點(diǎn)的距離為海里.

1)求的度數(shù)與點(diǎn)到直線的距離;

2)執(zhí)法船從航行了多少海里?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(教材呈現(xiàn))

下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第79頁的部分內(nèi)容.

請(qǐng)根據(jù)教材內(nèi)容,結(jié)合圖,寫出完整的解題過程.

(結(jié)論應(yīng)用)

1)在圖中,若AB=2,∠AOD=120°,則四邊形EFGH的面積為______

2)如圖,在菱形ABCD中,∠BAD=120°,O是其內(nèi)任意一點(diǎn),連接O與菱形ABCD各頂點(diǎn),四邊形EFGH的頂點(diǎn)E、FG、H分別在AO、BOCO、DO上,EO=2AE,EFABGH,且EF=GH,若△EFO與△GHO的面積和為,則菱形ABCD的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長交BP于點(diǎn)F. 試說明:(1)△ABP≌△AEQ;(2)EFBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織七年級(jí)學(xué)生進(jìn)行“垃圾分類”知識(shí)測試,現(xiàn)隨機(jī)抽取部分學(xué)生的成績進(jìn)行統(tǒng)計(jì),并繪制如下頻數(shù)分布表以及頻數(shù)分布直方圖.

分?jǐn)?shù)檔

分?jǐn)?shù)段/

頻數(shù)

頻率

A

90x≤100

a

0.12

B

80x≤90

b

0.18

C

70x≤80

20

c

D

60x≤70

15

d

請(qǐng)根據(jù)以上信息,解答下列問題:

1)已知AB檔的學(xué)生人數(shù)之和等于D檔學(xué)生人數(shù),求被抽取的學(xué)生人數(shù),并把頻數(shù)分布直方圖補(bǔ)充完整.

2)該校七年級(jí)共有200名學(xué)生參加測試,請(qǐng)估計(jì)七年級(jí)成績?cè)?/span>C檔的學(xué)生人數(shù).

3)你能確定被抽取的這些學(xué)生的成績的眾數(shù)在哪一檔嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AC6cm,BC8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0t2),連接PQ

1)若BPQABC相似,求t的值;

2)試探究t為何值時(shí),BPQ的面積是cm2

3)直接寫出t為何值時(shí),BPQ是等腰三角形;

4)連接AQ,CP,若AQCP,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案