【題目】課本拓展
舊知新意:
我們容易證明,三角形的一個外角等于與它不相鄰的兩個內角的和.那么,三角形的一個內角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關系呢?
1.嘗試探究:
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關系?為什么?
2.初步應用:
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-∠C= ;
(3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關系?請利用上面的結論直接寫出答案 .
3拓展提升:
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關系?為什么?(若需要利用上面的結論說明,可直接使用,不需說明理由)
【答案】(1)∠DBC+∠ECB=180°+∠A;(2)50°;(3)∠P=90°-∠A;(4)∠BAD+∠CDA=360°-2∠P.
【解析】
試題分析:(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和表示出∠DBC+∠ECB,再利用三角形內角和定理整理即可得解;
(2)根據(jù)(1)的結論整理計算即可得解;
(3)表示出∠DBC+∠ECB,再根據(jù)角平分線的定義求出∠PBC+∠PCB,然后利用三角形內角和定理列式整理即可得解;
(4)延長BA、CD相交于點Q,先用∠Q表示出∠P,再用(1)的結論整理即可得解.
試題解析:(1)∠DBC+∠ECB
=180°-∠ABC+180°-∠ACB
=360°-(∠ABC+∠ACB)
=360°-(180°-∠A)
=180°+∠A;
(2)∵∠1+∠2=∠180°+∠C,
∴130°+∠2=180°+∠C,
∴∠2-∠C=50°;
(3)∠DBC+∠ECB=180°+∠A,
∵BP、CP分別平分外角∠DBC、∠ECB,
∴∠PBC+∠PCB=(∠DBC+∠ECB)=(180°+∠A),
在△PBC中,∠P=180°-(180°+∠A)=90°-∠A;
即∠P=90°-∠A;
(4)延長BA、CD于Q,
則∠P=90°-∠Q,
∴∠Q=180°-2∠P,
∴∠BAD+∠CDA=180°+∠Q,
=180°+180°-2∠P,
=360°-2∠P.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
(3)若直線與y軸的交點為E,連結AD、AE,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】太陽半徑約為696 000 km,將696 000用科學記數(shù)法表示為( )
A. 6.96×105 B. 69.6×104 C. 6.96×103 D. 0.696×108
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com