【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
【答案】B
【解析】
分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,由對稱的性質(zhì)得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB∠COD,證出△OCD是等邊三角形,得出∠COD=60°,即可得出結(jié)果.
分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,如圖所示.
∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為D,關(guān)于OB的對稱點(diǎn)為C,∴PM=DM,OP=OD,∠DOA=∠POA;
∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB∠COD.
∵△PMN周長的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等邊三角形,∴∠COD=60°,∴∠AOB=30°.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動(dòng)的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂類活動(dòng)的學(xué)生人數(shù)為 人,參加球類活動(dòng)的人數(shù)的百分比為 ;
(2)請把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為 ;
(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,AC=BC=8,O為AB的中點(diǎn),以O為直角頂點(diǎn)作等腰直角三角形OEF,與邊AC,BC相交于點(diǎn)M,N.有下列結(jié)論:①AM=CN;②CM+CN=8;③;④當(dāng)M是AC的中點(diǎn)時(shí),OM=ON.其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,點(diǎn)B′在線段AB上,AC,A′B′交于點(diǎn)O,則∠COA′的度數(shù)是( )
A.50°B.60°
C.45°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解八年級學(xué)生對(科學(xué))、(技術(shù))、(工程)、(藝術(shù))、(數(shù)學(xué))中哪一個(gè)領(lǐng)域最感興趣的情況,該校對八年級學(xué)生進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下的條形圖和扇形圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)這次抽樣調(diào)查共調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求扇形統(tǒng)計(jì)圖中(數(shù)學(xué))所對應(yīng)的圓心角度數(shù);
(4)若該校八年級學(xué)生共有400人,請根據(jù)樣本數(shù)據(jù)估計(jì)該校八年級學(xué)生中對(科學(xué))最感興趣的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)課本習(xí)題回放:如圖①,∠ACB=90°,AC=BC, AD⊥CE,BE⊥CE,垂足分別為D,E,AD=2.5cm,DE=1.7cm..求BE的長.
(2)探索證明:如圖②,點(diǎn)B、C在∠MAN的邊AM、AN上,點(diǎn)E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為AB邊上的中點(diǎn),連接DE并延長,交CB的延長線于點(diǎn)F.
求證:;
若平行四邊形ABCD的面積為32,試求四邊形EBCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn), . 為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)如果以B,P,N為頂點(diǎn)的三角形與相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com