如圖,過矩形ABCD的四個(gè)頂點(diǎn)作對(duì)角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為______.
由題意知,HGEFAC,EHFGAC,
∴四邊形EFHG是平行四邊形,
∴HG=EF=AC,EH=FG=AC
∵矩形的對(duì)角線相等,
∴AC=BD,
∴EH=HG,
∴平行四邊形EFHG是菱形.
故答案為菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,以矩形ABCD的頂點(diǎn)A為原點(diǎn),AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系.點(diǎn)D的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(0,6),點(diǎn)F在對(duì)角線AC上運(yùn)動(dòng)(點(diǎn)F不與點(diǎn)A、C重合),過點(diǎn)F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3
(1)試判斷S1,S2的關(guān)系,并加以證明;
(2)當(dāng)S3:S2=1:3時(shí),求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,把△AEF沿對(duì)角線AC所在直線平移,得到△A′E′F′,且A′,F(xiàn)′兩點(diǎn)始終在直線AC上,是否存在這樣的點(diǎn)E′,使點(diǎn)E′到x軸的距離與到y(tǒng)軸的距離比是5:4?若存在,請(qǐng)求出點(diǎn)E′的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知菱形ABCD的對(duì)角線AC=2
7
+4
,BD=2
7
-4
,求菱形的邊長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD中,ADBC,已知BC=CD=AC=2
3
,AB=
6
,則BD的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,過點(diǎn)A作AGDB交CB的延長線于點(diǎn)G.
(1)求證:DEBF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小文要制作一個(gè)菱形工藝品風(fēng)箏參加學(xué)校的藝術(shù)節(jié)展覽,她用兩根分別長為24cm和32cm的鐵絲做風(fēng)箏的對(duì)角線,并用線繩將四個(gè)頂點(diǎn)順次連接起來,粘上彩色襯紙.求這個(gè)菱形風(fēng)箏的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

順次連接對(duì)角線相等的四邊形各邊中點(diǎn)所得的四邊形是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,D是△ABC外角∠ACE的平分線上一點(diǎn),DF⊥AC于F,DE⊥BC交延長線于E.
(1)求證:CE=CF;
(2)找一點(diǎn)D′,使得DFD′E是菱形,請(qǐng)你畫出草圖,并簡(jiǎn)要敘述D′的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在菱形ABCD中,AB=5,對(duì)角線AC=6,則這個(gè)菱形面積是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案