【題目】如圖1,Rt△ABC中,∠ACB=90.,直角邊AC在射線OP上,直角頂點(diǎn)C與射線端點(diǎn)0重合,AC=b,BC=a,且滿足.
(1)求a,b的值;
(2)如圖2,向右勻速移動(dòng)Rt△ABC,在移動(dòng)的過程中Rt△ABC的直角邊AC在射線OP上勻速向右運(yùn)動(dòng),移動(dòng)的速度為1個(gè)單位/秒,移動(dòng)的時(shí)間為t秒,連接OB.
①若△OAB為等腰三角形,求t的值;
②Rt△ABC在移動(dòng)的過程中,能否使△OAB為直角三角形?若能,求出t的值:若不能,說明理由.
【答案】(1)a=3,b=4(2)①t=4或t=1;②能.t=.
【解析】
(1)根據(jù)兩個(gè)非負(fù)數(shù)的和為零則每一個(gè)數(shù)都為零,得出b-4=0 ,a-3=0 ,求解即可得出a,b的值;
(2)①首先根據(jù)勾股定理算出AB的長(zhǎng)及用含t的式子表示出OA,OB2,然后分三類討論:當(dāng)OB=AB時(shí);當(dāng)AB=OA時(shí);當(dāng)OB=OA時(shí);一一列出方程求解即可得出t的值;②能.由于t>0,點(diǎn)C在OP上,∠ACB = 90,故只能是∠OBA=90°,根據(jù)勾股定理得出關(guān)于t的方程求出t的值即可.
(1)解:∵,,足,
∴,
∴a=3,b=4
(2)解:①∵AC=4,BC=3,
∴AB==5,
∵OC=t
∴OB2=t2+32=t2+9,OA=t+4,
當(dāng)OB=AB時(shí),t2+9=25,解得t=4或t=﹣4(舍去);
當(dāng)AB=OA時(shí),5=t+4,解得t=1;
當(dāng)OB=OA時(shí),t2+9=(t+4)2,解得t=-(舍去).
綜上所述,t=4或t=1;
②能.
∵t>0,點(diǎn)C在OP上,∠ACB
∴只能是∠OBA=90°,
∴OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t=.
∴Rt△ABC在移動(dòng)的過程中,能使△OAB為直角三角形,此時(shí)t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)D在的AB邊上,且.
(1)作的平分線DE,交BC于點(diǎn)E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷直線DE與直線AC的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究
小聰將命題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍?duì)∠B分為“直角、鈍角、銳角”三種情況進(jìn)行探究.
第一種情況:當(dāng)∠B 是直角時(shí),如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時(shí),如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點(diǎn)D,使DF=AC,畫出符合條件的點(diǎn)D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時(shí),如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點(diǎn)C作AB邊的垂線交AB延長(zhǎng)線于點(diǎn)M;同理過點(diǎn)F作DE邊的垂線交DE延長(zhǎng)線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請(qǐng)補(bǔ)全圖形,進(jìn)而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場(chǎng),某車行經(jīng)營(yíng)的A型車去年2月份銷售總額為3.2萬元,今年經(jīng)過改造升級(jí)后A型車每輛銷售價(jià)比去年增加400元,若今年2月份與去年2月份賣出的A型車數(shù)量相同,則今年2月份A型車銷售總額將比去年2月份銷售總額增加25%.
(1)求今年2月份A型車每輛銷售價(jià)多少元?
(2)該車行計(jì)劃今年3月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的2倍,A.B兩種型號(hào)車的進(jìn)貨和銷售價(jià)格如表,問應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A型車 | B型車 | |
進(jìn)貨價(jià)格(元/輛) | 1100 | 1400 |
銷售價(jià)格(元/輛) | 今年的銷售價(jià)格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來, 而由于,所以的整數(shù)部分為,將 減去其整數(shù)部分,所得的差就是其小數(shù)部分,根據(jù)以上內(nèi)容,解答下面的問題:
的整數(shù)部分是 ;小數(shù)部分是 .
的整數(shù)部分是 ,小數(shù)部分是 .
若設(shè)整數(shù)部分為,小數(shù)部分為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)A與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是“下滑數(shù)”的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)紙盒內(nèi)有張完全相同的卡片,分別標(biāo)號(hào)為,,,.隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標(biāo)號(hào)等于”的概率;
(2)小明同學(xué)連續(xù)做了次試驗(yàn),這次試驗(yàn)沒有一次出現(xiàn)“兩次抽出卡片的標(biāo)號(hào)和等于”.他說,“第次試驗(yàn)我一定能夠‘兩次抽出卡片的標(biāo)號(hào)和等于’”.你認(rèn)為他說得對(duì)嗎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?
(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com