【題目】如圖,甲、乙兩船從港口A同時(shí)出發(fā),甲船以每小時(shí)30海里的速度向北偏東35°方向航行,乙船以每小時(shí)40海里的速度向另一方向航行,1小時(shí)后,甲船到達(dá)C島,乙船達(dá)到B島,若C、B兩島相距50海里,則乙船的航行方向?yàn)槟掀珫|多少度?

【答案】55°

【解析】

首先計(jì)算出甲乙兩船的路程,再根據(jù)勾股定理逆定理可證明∠BAC=90°,然后再根據(jù)C島在A北偏東35°方向,可得B島在A南偏東55°方向.

由題意得:甲1小時(shí)的路程:AC=30×1=30海里,

1小時(shí)的路程:AC=40×1=40海里,
302+402=502

=+
∴∠BAC=90°,
C島在A北偏東35°方向,
B島在A南偏東55°方向.
∴乙船航行的角度是南偏東55°方向.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】應(yīng)用我們學(xué)過的數(shù)學(xué)知識(shí),解決下列問題:

(1)如圖①,從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,解釋這一不文明現(xiàn)象用到的基本事實(shí)是__________.

(2)如圖②,我們學(xué)過用直尺和三角尺畫平行線的方法,如圖所示,直線根據(jù)的基本事實(shí)是__________.

(3)如圖③,經(jīng)過刨平的木板上的兩個(gè)點(diǎn),能彈出一條筆直的墨線,而且只能彈出一條墨線,解釋這一實(shí)際應(yīng)用的基本事實(shí)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線 先向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后得到新的拋物線的頂點(diǎn)坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的三個(gè)頂點(diǎn)AB、D分別在長(zhǎng)方形 EFGH的邊EF、FG、EH,CHG的距離是1,到點(diǎn)H,G的距離分別為,則正方形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)閱讀)

如圖1,在ABC中,ABAC,點(diǎn)P為邊BC上的任意一點(diǎn),過點(diǎn)PPDAB,PEAC,垂足分別為D,E,過點(diǎn)CCFAB,垂足為F,求證PDPECF

小堯的證明思路是如圖2,連接AP,由ABPACP面積之和等于ABC的面積可以證得PDPECF

推廣延伸

如圖3,當(dāng)點(diǎn)PBC延長(zhǎng)線上時(shí),其余條件不變,請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法,猜想PD,PECF的數(shù)量關(guān)系,并證明

解決問題

如圖4,在平面直角坐標(biāo)系中有兩條直線l1y=-x+3,l2y=3x+3,l1,l2x軸的交點(diǎn)分別為A,B

(1)兩條直線的交點(diǎn)C的坐標(biāo)為 ;

(2)說明△ABC是等腰三角形;

(3)l2上的一點(diǎn)Ml1的距離是1,運(yùn)用上面的結(jié)論,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.

(1)A,B兩城相距 千米,乙車比甲車早到 小時(shí);

(2)甲車出發(fā)多長(zhǎng)時(shí)間與乙車相遇?

(3)若兩車相距不超過20千米時(shí)可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,長(zhǎng)方形紙片ABCD的長(zhǎng)AD9cm,寬AB3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.

求:(1)折疊后DE的長(zhǎng);(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在R t△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.

(1)動(dòng)手操作:利用尺規(guī)作,以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O,與AB的另一個(gè)交點(diǎn)為E,與AC的另一個(gè)交點(diǎn)為F(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由。
(2)若∠BAC=60度,CD= ,求線段BD、BE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和

查看答案和解析>>

同步練習(xí)冊(cè)答案