作業(yè)寶如圖:AD為△ABC的高,∠B=2∠C,DC=3BD,若AD=3,求AC的長(zhǎng).

解:
在DC上截取DE=BD,連接AE,
∵CD=3BD,
∴CE=2BD=2DE,
∵BD=DE,AD⊥BE,
∴AB=AE,
∴∠B=∠AEB,
∵∠B=2∠C,
∴∠AEB=2∠C,
∵∠AEB=∠C+∠EAC,
∴∠EAC=∠C,
∴AE=CE=2DE=2BD=BE,
設(shè)DE=a,則AE=CE=BE=2a,
在Rt△ADE中,由勾股定理得:AD2+DE2=AE2,
∴32+a2=(2a)2,
a=,
∴DE=,CD=3,
在Rt△ADC中,由勾股定理得:AC==6.
分析:在DC上截取DE=BD,連接AE,求出AB=AE,求出∠B=∠AEB,根據(jù)∠B=2∠C和∠AEB=∠C+∠EAC求出∠EAC=∠C,推出AE=CE=2DE=2BD=BE,設(shè)DE=a,則AE=CE=BE=2a,在Rt△ADE中,由勾股定理得出AD2+DE2=AE2,求出a=,得出DE=,CD=3,在Rt△ADC中,由勾股定理求出AC即可.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和判定,線段的垂直平分線,勾股定理,三角形的外角性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,題目綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對(duì)折,點(diǎn)C落在點(diǎn)C′的位置,BC=4,求BC′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 
,
②求△BDE中BD邊上的高EF的長(zhǎng);
(3)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點(diǎn)E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請(qǐng)寫出解題的必要過(guò)程)
(4)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案