【題目】如圖所示,AB是00的直徑,BC是⊙O的切線,連接AC,交⊙0于D,E為弧AD上一點,連接AE,BE交AC于點F且,(1)求證CB=CF;(2)若點E到弦AD的距離為3,cos C=,求⊙O的半徑.

【答案】(1)證明見解析;(2)6

【解析】試題分析:(1)如圖1,通過相似三角形的對應角相等推知, 又由弦切角定理、對頂角相等證得 最后根據(jù)等角對等邊證得結論;
(2)如圖2,連接OEAC于點G,設的半徑是r.根據(jù)(1)中的相似三角形的性質證得∠4=5,所以由圓周角、弧、弦間的關系推知點E是弧的中點,則 然后通過解直角求得,則以求的值.

試題解析:(1)證明:如圖1,

又∵∠AEF=AEB,

∴△AEF∽△AEB

∴∠1=EAB.

∵∠1=2,3=EAB,

∴∠2=3,

CB=CF;

(2)如圖2,連接OEAC于點G,設的半徑是r.

(1),AEF∽△AEB,則∠4=5.

.=,

OEAD,

EG=3

解得,r=6,的半徑是6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小紅和小鳳兩人在解關于的方程組,小紅只因看錯了系數(shù),得到方程組的解為;小鳳只因看錯了系數(shù),得到方程組的解為;求的值和原方程組的解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學習用品--圓規(guī).我們不妨把這種圖形叫做規(guī)形圖,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?請解決以下問題:

(1)觀察規(guī)形圖,試探究∠BPC與∠A、∠B、∠C之間的關系,并說明理由;

(2)請你直接利用以上結論,解決以下問題:

①如圖2:已知△ABCBP平分∠ABC,CP平分∠ACB,直接寫出∠BPC與∠A之間存在的等量關系為:

遷移運用:如圖3:在△ABC中,∠A=80°,點O是∠ABC,∠ACB角平分線的交點,點P是∠BOC,∠OCB角平分線的交點,若∠OPC=100°,則∠ACB的度數(shù)

②如圖4:若D點是△ABC內任意一點,BP平分∠ABD,CP平分∠ACD.直接寫出∠BDC、∠BPC、∠A之間存在的等量關系為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③H的坐標是(7,80);④n=7.5.

其中說法正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是反比例函數(shù)y= (k>0)的圖像在第一象限上的一個動點,過P作z軸的垂線,垂足為M,已知△POM的面積為2.

(l)求k的值;

(2)若直線y=x與反比例函數(shù)y= 的圖像在第一象限內交于點A,求過點A和點B(0,-2)的直線表達式;

(3)過A作AC⊥y軸于點C,若△ABC與△POM相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBCD,BDAD,DGDC

1)求證:△BDG≌△ADC

2)分別取BG、AC的中點EF,連接DEDF,則DEDF有何關系,并說明理由.

3)在(2)的條件下,連接EF,若AC10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當點K到達點F時停止運動,點P也隨之停止.設點P、K運動的時間是t秒(t>0).

(1)當t=1時,KE=_____,EN=_____

(2)當t為何值時,△APM的面積與△MNE的面積相等?

(3)當點K到達點N時,求出t的值;

(4)當t為何值時,△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG.

(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;

(2)若AB=8,AD=4,求四邊形DHBG的面積.

查看答案和解析>>

同步練習冊答案