精英家教網 > 初中數學 > 題目詳情
已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.
(1)證明:∵⊙C與x軸相切于原點O,點P在x軸上,
∴PO與⊙C相切于點O,
又∵PA切⊙C于點A,
∴PO=PA,PC平分∠APO,
∴PC⊥OA.

(2)∵△APO為等邊三角形,
∴∠CPO=
1
2
∠APO=
1
2
×60°=30°,
又∵∠POC=90°,
∴PC=2OC=2×2=4;
在Rt△POC中由勾股定理可得PO=2
3
,
作AH⊥PO于H,在Rt△AHO中,OA=OP=2
3

∴OH=
1
2
PO=
3
,
∴AH=3,
∴A(-
3
,3),
又點C(0,2),
故利用待定系數法可求得直線AB的函數解析式為y=-
3
3
x+2.

(3)S四邊形POCA=2S△POC=2×
1
2
×(-x)×2=-2x,
即S=-2x(x<0).

(4)存在這樣的一點P,其坐標為(-2,0),
∵S△AOB=2S△AOC,S四邊形POCA=2S△POC,
∴S△AOC=S△POC,
∴PAOC;
又∵∠POC=90°,
∴∠APO=90°,
∵∠PAC=∠POC=90°,
∴四邊形POCA是矩形,
∴OP=AC=2,
∴P(-2,0).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

在直角坐標平面內,O為原點,點A的坐標為(1,0),點C的坐標為(0,4),直線CMx軸(如圖所示),點B與點A關于原點對稱,直線y=x+b(b為常數)經過點B,且與直線CM相交點D,連接OD,設P在x軸的正半軸上,若△POD為等腰三角形,則點P的坐標為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在東西方向的海岸線L上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40km的B處;經過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距8
3
km的C處.
(1)求該輪船航行的速度(保留精確結果);
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由;
(3)根據(2)的探究過程,請求出要使從B出發(fā)的輪船靠岸,那么輪船的航線y=kx+b的k的取值范圍?(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

平面直角坐標系內有兩條直線l1、l2,直線l1的解析式為y=-
2
3
x+1,如果將坐標紙折疊,使直線l1與l2重合,此時點(-2,0)與點(0,2)也重合.
(1)求直線l2的解析式;
(2)設直線l1與l2相交于點M,問:是否存在這樣的直線l:y=x+t,使得如果將坐標紙沿直線l折疊,點M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請說明理由;
(3)設直線l2與x軸的交點為A,與y軸的交點為B,以點C(0,
2
3
)為圓心,CA的長為半徑作圓,過點B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(點D在點E的下方)
①在如圖所示的直角坐標系中畫出圖形;
②設OD=x,△BOD的面積為S1,△BEC的面積為S2,
S1
S2
=y
,求y與x之間的函數關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商廈試銷一種成本為50元/件的商品,規(guī)定試銷時的銷售單價不低于成本,又不高于80元/件,試銷中銷售量y(件)與銷售單價x(元/件)的關系可近似的看作一次函數(如圖).
(1)求y與x的關系式;
(2)設商廈獲得的毛利潤(毛利潤=銷售額-成本)為s(元),則銷售單價定為多少時,該商廈獲利最大,最大利潤是多少?此時的銷售量是多少件?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如果y+3與x+2成正比例,且x=3時,y=7.
(1)寫出y與x之間的函數關系式;
(2)畫出該函數圖象;并觀察當x取什么值時,y<0?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

竹溪物流公司組織20輛汽車裝運A、B、C三種竹溪特產共120噸去外地銷售.按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產,且必須裝滿,根據如表提供的信息,解答以下問題:
(1)設裝運A種土特產的車輛數為x,裝運B種土特產的車輛數為y,求y與x之間的函數關系式;
竹溪土特產種類ABC
每輛汽車運載量(噸)865
每噸土特產獲利(百元)121610
(2)如果裝運每種土特產的車輛都不少于3輛,要使此次銷售獲利最大,應怎樣安排車輛?并求出最大利潤的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖所示,直線l的解析式為y=
3
4
x-3,并且與x軸、y軸分別相交于點A、B.
(1)求A、B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/每秒的速度向x軸正方向運動,問什么時刻該圓與直線l相切;
(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以0.5個單位/秒的速度運動,問在整個運動的過程中,點P在動圓的園面(圓上和圓的內部)上一共運動了多長時間?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知一次函數y=(m+2)x+1的圖象經過點(2,0),則m的值是(  )
A.
5
2
B.-
5
2
C.-
2
5
D.
2
5

查看答案和解析>>

同步練習冊答案