【題目】如圖,在邊長為 2a 的等邊△ABC 中,M 是高 CH 所在直線上的一個動點(diǎn), 連接 BM,將線段 BM 繞點(diǎn) B 逆時針旋轉(zhuǎn) 60°得到 BN,連接 HN,則在點(diǎn) M 運(yùn)動的過程中,線段 BN 長度的最小值為___________ .
【答案】a.
【解析】
首先取BC的中點(diǎn)D, 又已知條件可證得△HBN≌△DBM , 在點(diǎn)M運(yùn)動的過程中, 要使線段BN的長度最小,即M點(diǎn)與H點(diǎn)重合,可得BN 長度的最小值.
解:如下圖所示,
如圖, 取BC的中點(diǎn)D, 連接MD.
△ABC 為等邊三角形, CH為AB邊上的高,
AB=BC,∠ABC=60,H為AB的中點(diǎn).
D為BC的中點(diǎn),BD=BH.
由旋轉(zhuǎn)知, ∠MBN=60, BM=BN,
∠DBM=∠HBN,
△HBN≌△DBM(SAS),
BN=BM.
在點(diǎn)M運(yùn)動的過程中, 要使線段BN的長度最小,即M點(diǎn)與H點(diǎn)重合,此時BN=BM=BH=a,
故BN的最小值為a.
故答案:a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB = AC,AB的垂直平分線DE交AC于D,交AB于E.
(1)若AB = AC = 8cm,BC = 6cm,求△BCD的周長;
(2)若∠CBD = 30°,試求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點(diǎn)M 從點(diǎn) B 出發(fā)以 2cm/s 的速度向點(diǎn) A 運(yùn)動,點(diǎn) N 從點(diǎn) A 出發(fā)以 1cm/s 的速度向點(diǎn) C 運(yùn)動,設(shè) M、N 分別從點(diǎn) B、A 同時出發(fā),運(yùn)動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當(dāng) t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當(dāng) t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(5,)、點(diǎn)B(9,﹣10),與y軸交于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一個動點(diǎn);
(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線BC交于點(diǎn)E,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);
(3)當(dāng)∠PCB=90°時,作∠PCB的角平分線,交拋物線于點(diǎn)F.
①求點(diǎn)P和點(diǎn)F的坐標(biāo);
②在直線CF上是否存在點(diǎn)Q,使得以F、P、Q為頂點(diǎn)的三角形與△BCF相似,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,,點(diǎn)是折線上的一個動點(diǎn)(不與、重合).則的面積的最大值是( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點(diǎn),E是邊AC上一點(diǎn),若AE=2,則EM+CM的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分別是AC,AB,BC的中點(diǎn).點(diǎn)P從點(diǎn)D出發(fā)沿折線DE-EF-FC-CD以每秒7個單位長的速度勻速運(yùn)動;點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒4個單位長的速度勻速運(yùn)動,過點(diǎn)Q作射線QK⊥AB,交折線BC-CA于點(diǎn)G.點(diǎn)P,Q同時出發(fā),當(dāng)點(diǎn)P繞行一周回到點(diǎn)D時停止運(yùn)動,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動的時間是t秒(t>0).
(1)D,F兩點(diǎn)間的距離是 ;
(2)射線QK能否把四邊形CDEF分成面積相等的兩部分?若能,求出t的值.若不能,說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動到折線EF-FC上,且點(diǎn)P又恰好落在射線QK上時,求t的值;
(4)連結(jié)PG,當(dāng)PG∥AB時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時期數(shù)學(xué)家劉徽編撰的最早一部測量數(shù)學(xué)著作《海島算經(jīng)》中有一題:今有望海島,立兩表齊高三丈,前后相去千步,令后表與前表參相直.從前表卻行一百二十三步,人目著地,取望島峰,與表末參合.從后表卻行一百二十七步,人目著地,取望島峰,亦與表末參合.問島高幾何?
譯文:今要測量海島上一座山峰AH的高度,在B處和D處樹立標(biāo)桿BC和DE,標(biāo)桿的高都是3丈,B和D兩處相隔1000步(1丈=10尺,1步=6尺),并且AH,CB和DE在同一平面內(nèi).從標(biāo)桿BC后退123步的F處可以看到頂峰A和標(biāo)桿頂端C在同一直線上;從標(biāo)桿ED后退127步的G處可以看到頂峰A和標(biāo)桿頂端E在同一直線上.則山峰AH的高度是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com