(2009•深圳)如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大。

【答案】分析:(1)證全等三角形由AB=BC,BE=BF,∠ABE+∠EBC=∠CBF+∠EBC?∠BAE=∠CBF,可證的全等.
(2)因為BE=BF再根據(jù)(1)可得∠EFB=∠BEF=45°,∠EGC=∠EBG+∠BEF=45°+40°=85°
解答:(1)證明:∵四邊形ABCD是正方形,BE⊥BF
∴AB=CB,∠ABC=∠EBF=90°(1分)
∴∠ABC-∠EBC=∠EBF-∠EBC
即∠ABE=∠CBF(2分)
又BE=BF(3分)
∴△ABE≌△CBF;(4分)

(2)解:∵BE=BF,∠EBF=90°
∴∠BEF=45°(5分)
又∠EBG=∠ABC-∠ABE=40°(6分)
∴∠EGC=∠EBG+∠BEF=85°.(8分)
(注:其它方法酌情給分)
點評:本題關鍵在于全等三角形的證明以及等腰三角形性質(zhì)的運用,等腰三角形兩底角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年中考數(shù)學三輪復習每天30分綜合訓練(14)(解析版) 題型:填空題

(2009•深圳)如圖,點A為反比例函數(shù)y=的圖象在第二象限上的任一點,AB⊥x軸于B,AC⊥y軸于C,則矩形ABOC的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省荊州市中考仿真模擬考試數(shù)學試卷二(解析版) 題型:選擇題

(2009•深圳)如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,則DE的長度是( )

A.3
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省泉州市初中畢業(yè)班數(shù)學總復習綜合練習(五)(解析版) 題型:解答題

(2009•深圳)如圖,AB是⊙O的直徑,AB=10,DC切⊙O于點C,AD⊥DC,垂足為D,AD交⊙O于點E.
(1)求證:AC平分∠BAD;
(2)若sin∠BEC=,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學模擬試卷(一)(解析版) 題型:選擇題

(2009•深圳)如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,則DE的長度是( )

A.3
B.5
C.
D.

查看答案和解析>>

同步練習冊答案