【題目】將正整數按如圖方式進行有規(guī)律的排列,第2行最后一個數是4,第3行最后一個數是7,第4行最后一個數是10,…,依此類推,第10行第2個數是__________,第__________行最后一個數是2 020.
1
2 3 4
3 4 5 6 7
4 5 6 7 8 9 10
5 6 7 8 9 10 11 12 13
…
【答案】11, 674
【解析】
觀察整數排列的規(guī)律可得,第n行的第一個數為n,第二個數為n+1,由此可得第10行第2個數的值;令第n行的最后一個數為(n為正整數),根據給定條件寫出部分an的值,根據數的變化找出變化規(guī)律“=3n-2”,依此規(guī)律即可得出結論.
解: 觀察整數排列的規(guī)律可得,第n行的第一個數為n,第二個數為n+1,可得10行第2個數為:10+1=11;
令第n行的最后一個數為(n為正整數),觀察,發(fā)現(xiàn)規(guī)律:=1,=4,=7,=10,
=3n-2.
2020=6743-2,
第674行的最后一個數是2020.
故答案為:11,674.
科目:初中數學 來源: 題型:
【題目】長春外國語學校為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格多5元.已知學校用12000元購買的科普類圖書的本數與用9000元購買的文學類圖書的本數相等,求學校購買的科普類圖書和文學類圖書平均每本的價格各是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,∠ABC=90°,對角線AC、BD相交于點O.下列條件中,不能判斷對角線互相垂直的是( )
A.∠1=∠4
B.∠1=∠3
C.∠2=∠3
D.OB2+OC2=BC2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設A1,A2,A3,A4是數軸上的四個不同點,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且,則稱A3,A4調和分割A1,A2.已知平面上的點C,D調和分割點A,B,則( )
A. 點C可能是線段AB的中點
B. 點C,D可能同時在線段AB上
C. 點D一定不是線段AB的中點
D. 點C,D可能同時在線段AB的延長線上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l1:y=﹣x+3與坐標軸分別交于點A,B,與直線l2:y=x交于點C.
(1)求A,B兩點的坐標;
(2)求△BOC的面積;
(3)如圖2,若有一條垂直于x軸的直線l以每秒1個單位的速度從點A出發(fā)沿射線AO方向作勻速滑動,分別交直線l1,l2及x軸于點M,N和Q.設運動時間為t(s),連接CQ.
①當OA=3MN時,求t的值;
②試探究在坐標平面內是否存在點P,使得以O、Q、C、P為頂點的四邊形構成菱形?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國是一個嚴重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應交水費y元.
(1)若0<x≤6,請寫出y與x的函數關系式.
(2)若x>6,請寫出y與x的函數關系式.
(3)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學校出發(fā)到某圖書館查閱資料,學校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學校的路程 (千米)與所經過的 時間 (分鐘)之間的函數關系,請根據圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學校的速度為 千米/分鐘.
(2)請你求出小明離開學校的路程 (千米)與所經過的時間 (分鐘)之間的函數表達式;
(3)若設兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中.過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長的數值與面積的數值相等,則這個點叫做和諧點.例如.圖中過點P分別作x軸,y軸的垂線.與坐標軸圍成矩形OAPB的周長的數值與面積的數值相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=﹣x+b(b為常數)上,求a,b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射線繞原點從數軸的正半軸逆時針旋轉一定的角度(),射線上的一點與原點的距離()為,并規(guī)定:當或時,點的位置記作;當時,點的位置記作.如圖,點、的位置表示為,.回答下列問題:
(1)已知點,點,則點與點的距離為 ;線段的中點的位置是( , ).
(2)已知點,點,,點從點出發(fā),以每秒2個單位長度的速度在線段上來回運動;同時射線以每秒10°的速度繞原點逆時針旋轉,當時間(其中)為何值時,?并求出此時三角形的面積.
(3)直接寫出位置滿足的所有點所圍成的圖形面積.(結果保留一位小數)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com