【題目】已知:如圖1,△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)如圖2,當直線AC與⊙O相切時,求⊙O的半徑.
【答案】
(1)證明:連接OE.
∵△ABC是等邊三角形∴∠B=∠C=60°;
又∵OB=OE∴∠OEB=∠B=∠C=60°;
∴OE∥AC;
∵EF⊥AC,
∴EF⊥OE
∴EF是⊙O的切線.
(2)設(shè)直線AC與⊙O相切于點G,連接OG,則OB=OG=r,OA=4﹣r
在Rt△AOG中,sinA= ,
∴ = ,
解得:r=8 ﹣12.
【解析】(1)連接OE,只要證明OE⊥EF,只要證明OE∥AC即可解決問題.(2)設(shè)直線AC與⊙O相切于點G,連接OG,則OB=OG=r,OA=4﹣r,在Rt△AOG中,根據(jù)sinA= ,列出方程即可解決問題.
【考點精析】利用等邊三角形的性質(zhì)對題目進行判斷即可得到答案,需要熟知等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,A(a,0)、B(b,0)且a、b滿足|a+4|+=0
①求a、b的值;
②若C(﹣6,0),連CB,作BE⊥CB,垂足為B,且BC=BE,連AE交y軸于P,求P點坐標;
(2)如圖2,若A(6,0),B(0,3),點Q從A出發(fā),以每秒1個單位的速度沿射線AO勻速運動,設(shè)點Q運動時間為t秒,過Q點作直線AB的垂線,垂足為D,直線QD與y軸交于E點,在點Q的運動過程中,一定存在△EOQ≌△AOB,請直接寫出存在的t值以及相應(yīng)的E點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市購進一批文具袋,每個進價為10元.試銷售期間,記錄的每天的銷售數(shù)量與銷售單價的數(shù)據(jù)如下表:
銷售單價x(元 | 11 | 12 | 13 | 14 | 15 | … |
銷售數(shù)量y(個) | 38 | 36 | 34 | 32 | 30 | … |
備注:物價局規(guī)定,每個文具袋的售價不低于10元且不高于18元 |
請你根據(jù)表中信息解答下列問題:
(1)y是x的函數(shù),其函數(shù)關(guān)系式為
(2)營業(yè)員發(fā)現(xiàn)有一天的利潤是150元,則銷售單價為元.
(3)試銷售的目的是想要每天獲得最大的銷售利潤.請你幫助銷售經(jīng)理計算一下,在這種情況下單價x(元)應(yīng)定為多少時,每天的銷售利潤w(元)最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤25).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
點M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對值叫做點M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點的距離?
(3)點P為數(shù)軸上一點,其表示的數(shù)為x,用含有x的式子表示BP= ,當BP=4時,x= ;當|x﹣3|+|x+2|的值最小時,x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為有理數(shù),且它們在數(shù)軸上的位置如圖所示.
(1)試判斷a,b,c的正負性;
(2)根據(jù)數(shù)軸化簡:
①|a|=_____; ②|b|=_____:
③|c|=_____; ④|-a|=_____;
⑤|-b|=_____; ⑥|-c|=_____.
(3)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))
(1)計算a15的值;
(2)通過拼圖你發(fā)現(xiàn)前三個圖形的面積之和與第四個正方形的面積之間有什么關(guān)系:
__________________________________(用含a、b的式子表示);
(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點 的坐標為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(在 左面),且.
(1)如圖,連接,當 時,試說明:.
(2)過點 作軸,垂足為,當時,將沿所在直線翻折,翻折后邊 交 軸于點 ,求點 的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c是△ABC中最長的邊,求c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com