【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,
(1)尺規(guī)作圖:作△ABC的角平分線AE,交CD于點F(不寫作法,保留作圖痕跡);
(2)求證:△CEF為等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與⊙O相切于點D,過圓心O作EF∥交⊙O于E、F兩點,點A是⊙O上一點,連接AE,AF,并分別延長交直線于B、C兩點;
(1)求證:∠ABC+∠ACB=90°;
(2)若⊙O的半徑,BD=12,求tan∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經過原點,頂點分別為A,B,與x軸的另一個交點分別為M、N,如果點A與點B,點M與點N都關于原點O成中心對稱,則拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2,使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是_______________________和_________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次“尋寶”人找到了如圖所示的兩個標志點A(2,3),B(4,1),A,B兩點到“寶藏”點的距離都是,則“寶藏”點的坐標是( 。
A. (1,0) B. (5,4) C. (1,0)或(5,4) D. (0,1)或(4,5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蓄水池的排水管每小時排水8立方米,6小時可將滿池水全部排空.
(1)蓄水池的容積是多少?
(2)如果每小時排水量用Q表示,求排水時間t與Q的函數(shù)關系式.
(3)如果5小時內把滿池水排完,那么每小時排水量至少是多少?
(4)已知排水管最大排水量是每小時12立方米,那么最少要多少小時才能將滿池水全部排空?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com