( 本題12分) 已知:如圖,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延長線交DC于點E。
求證:【小題1】(1)△BFC≌△DFC;
【小題2】(2)AD=DE
科目:初中數(shù)學 來源: 題型:
(11·丹東)(本題12分)已知:正方形ABCD.
(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關系和位置關系分別是什么?請直接寫出結論.
(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BE、DF,此時(1)中結論是否成立,如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BE、DF,猜想當AE與AD滿足什么數(shù)量關系時,直線DF垂直平分BE.請直接寫出結論.
(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年江蘇省沭陽縣中學中考模擬考試數(shù)學卷.doc 題型:解答題
﹣(本題12分)已知二次函數(shù)y=x2+bx+c與x軸交于A(-1,0)、B(1,0)兩點.
(1)求這個二次函數(shù)的關系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運動,當⊙P與兩坐標軸都相切時,求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當點P的縱坐標在什么范圍內(nèi)取值時,⊙P與y軸相離、相交?
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆浙江省新昌縣實驗中學九年級上學期期中階段性測試數(shù)學卷 題型:解答題
(本題12分)已知二次函數(shù)的圖象經(jīng)過點(0,-3),且頂點坐標為(-1,-4).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2013屆浙江建德李家鎮(zhèn)初級中學九年級上學期期末考試數(shù)學試卷(帶解析) 題型:解答題
(本題12分)已知兩直線,分別經(jīng)過點A(3,0),點B(-1,0),并且當兩直線同時相交于y負半軸的點C時,恰好有,經(jīng)過點A、B、C的拋物線的對稱軸與直線交于點D,如圖所示。
(1)求拋物線的函數(shù)解析式;
(2)當直線繞點C順時針旋轉(zhuǎn)一個銳角時,它與拋物線的另一個交點為P(x,y),求四邊形APCB面積S關于x的函數(shù)解析式,并求S的最大值;
(3)當直線繞點C旋轉(zhuǎn)時,它與拋物線的另一個交點為P,請找出使△PCD為等腰三角形的點P,并求出點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東濟南卷)數(shù)學解析版 題型:解答題
(11·丹東)(本題12分)已知:正方形ABCD.
(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關系和位置關系分別是什么?請直接寫出結論.
(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BE、DF,此時(1)中結論是否成立,如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BE、DF,猜想當AE與AD滿足什么數(shù)量關系時,直線DF垂直平分BE.請直接寫出結論.
(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com