如圖:CD是△ABC中∠ACB的外角平分線,請猜測∠BAC和∠B的大小關系,并說明理由.
分析:根據(jù)角平分線的定義可得∠ACD=∠ECD,然后根據(jù)三角形的一個外角大于任何一個與它不相鄰的內角可得∠BAC>∠ACD,∠ECD>∠B,從而得解.
解答:解:∠BAC>∠B.
理由如下:∵CD是△ABC中∠ACB的外角平分線,
∴∠ACD=∠ECD,
∵∠BAC是△ACD的外角,
∴∠BAC>∠ACD,
∴∠BAC>∠ECD,
∵∠ECD是△BCD的外角,
∴∠ECD>∠B,
∴∠BAC>∠B.
點評:本題考查了三角形的任意兩邊之和大于第三邊的性質,熟記性質并準確識圖是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,CD是△ABC外角∠MCA的平分線,CD與三角形的外接圓交于點D.
(1)若∠BCA=60°,求證:△ABD為等邊三角形;
(2)設點F為弧AD上一點,且弧AF=弧BC,DF的延長線BA的延長線點E.
求證:AC•AF=DF•FE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,CD是△ABC的高,AC=4,BC=3,DB=
95

(1)求AD的長;
(2)△ABC是直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是△ABC的中線,且CD=
12
AB,求∠ACB的度數(shù)?由此可得到一個什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,CD是△ABC的高,點E、F、G分別在BC、AB、AC上,且EF⊥AB,DG∥BC.試判斷∠1、∠2的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,CD是△ABC的高,點E、F、G分別在BC、AB、AC上,且EF⊥AB,DG∥BC.試判斷∠1、∠2的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案