【題目】如圖,AB是半圓的直徑,O為圓心,AD、BD是半圓的弦,且PDA=PBD

(1)判斷直線PD是否為O的切線,并說明理由;

(2)如果BDE=60°,PD=,求PA的長.

【答案】(1)PDO的切線.(2)1.

【解析】

試題分析:(1)要證是直線PD是為O的切線,需證PDO=90°.因?yàn)锳B為直徑,所以ADO+ODB=90°,由PDA=PBD=ODB可得ODA+PDA=90°,即PDO=90°

(2)根據(jù)已知可證AOD為等邊三角形,P=30°.在RtPOD中運(yùn)用三角函數(shù)可求解.

解:(1)PD是O的切線.理由如下:

AB為直徑,

∵∠ADB=90°

∴∠ADO+ODB=90°

∵∠PDA=PBD=ODB,

∴∠ODA+PDA=90°.即PDO=90°

PDO的切線.

(2)∵∠BDE=60°,ADB=90°,

∴∠PDA=180°﹣90°﹣60°=30°,

又PD為半圓的切線,所以PDO=90°

∴∠ADO=60°,又OA=OD,

∴△ADO為等邊三角形,AOD=60°

在RtPOD中,PD=,

OD=1,OP=2,

PA=PO﹣OA=2﹣1=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2pxq0的兩根同為負(fù)數(shù),(  )

A. p0q0 B. p0q0 C. p0q0 D. p0q0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x22x+3向上平移2個(gè)單位長度,再向右平移3個(gè)單位長度后,得到的拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,過點(diǎn)B作BECD,垂足為E,連接AE,F(xiàn)為AE上的一點(diǎn),且BFE=C

(1)求證:ABF∽△EAD;

(2)若BC=4,AB=3,BE=3,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P﹣2,3)向右平移3個(gè)單位長度后的坐標(biāo)為( )

A. 3,6 B. 1,3 C. 1,6 D. 6,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)等腰三角形的兩邊長分別是2和5,則它的周長為( .

A.12 B.9 C.12或9 D.9或7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種植物花粉的直徑為0.00035cm,將數(shù)據(jù)0.00035用科學(xué)記數(shù)法表示為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上與表示-3的點(diǎn)距離4個(gè)單位長度的點(diǎn)所表示的數(shù)為:__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:菱形OBCD在平面直角坐標(biāo)系中位置如圖所示,點(diǎn)B的坐標(biāo)為(2,0),DOB=60°

(1)點(diǎn)D的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;

(2)若點(diǎn)P是對(duì)角線OC上一動(dòng)點(diǎn),點(diǎn)E(0,﹣),求PE+PB的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案