【題目】如圖,已知拋物線x軸交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C.

1)求點(diǎn)AB、C的坐標(biāo);

2)若點(diǎn)E與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,求梯形AOCE的面積.

【答案】1A-4,0),B2,0),C,0,4);(212

【解析】

1)在拋物線的解析式中,令x=0可以求出點(diǎn)C的坐標(biāo),令y=0可以求出A、B點(diǎn)的坐標(biāo);(2)先求出E點(diǎn)坐標(biāo),然后求出OA,OC,CE的長(zhǎng)計(jì)算面積即可.

解:(1)當(dāng)y=0時(shí),-x+4=0,解得x1=4,x2=2

A(-4,0),B20),當(dāng)x=0時(shí),y=4,∴C0,4);

2y=x+4=x+12+,

∴拋物線y=x+4的對(duì)稱軸是直線x=1,

∴E的坐標(biāo)為(-2,4),則OA=4,OC=4CE=2,

S梯形AOCE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)的直徑的延長(zhǎng)線上,點(diǎn)上,且AC=CD,∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk≠0)的圖象與x軸,y軸分別交于A(﹣90)、B0,6),過(guò)點(diǎn)C2,0)作直線lBC垂直,點(diǎn)E在直線l位于x軸上方的部分.

1)求一次函數(shù)y=kx+bk≠0)的解析式;

2)求直線l的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;

(2)直接寫(xiě)出點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校院墻上部是由段形狀相同的拋物線形護(hù)欄組成的,為了牢固起見(jiàn),每段護(hù)欄需要間隔,加設(shè)一根不銹鋼支柱,防護(hù)欄的最高點(diǎn)據(jù)護(hù)欄底部(如圖),則這條護(hù)欄要不銹鋼支柱總長(zhǎng)度至少為(

A. 50m B. 100m C. 120m D. 160m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形ABCD沿其對(duì)角線AC剪開(kāi),再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=6cmBC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B1cm/秒的速度移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C2cm/秒的速度移動(dòng)。如果P、Q兩點(diǎn)在分別到達(dá)B.C兩點(diǎn)后就停止移動(dòng),回答下列問(wèn)題:

(1)運(yùn)動(dòng)開(kāi)始后第幾秒時(shí), PBQ的面積等于8?

(2)當(dāng)t=時(shí),試判斷DPQ的形狀。

(3)計(jì)算四邊形DPBQ的面積,并探索一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長(zhǎng).

(1)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀并說(shuō)明理由;

(2)已知a:b:c=3:4:5,求該一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形ABCD沿其對(duì)角線AC剪開(kāi),再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案