【題目】已知,在中,
,
,點(diǎn)
為
的中點(diǎn).
(1)若點(diǎn)、
分別是
、
的中點(diǎn),則線段
與
的數(shù)量關(guān)系是 ;線段
與
的位置關(guān)系是 ;
(2)如圖①,若點(diǎn)、
分別是
、
上的點(diǎn),且
,上述結(jié)論是否依然成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)如圖②,若點(diǎn)、
分別為
、
延長(zhǎng)線上的點(diǎn),且
,直接寫(xiě)出
的面積.
【答案】(1),
;(2)成立,證明見(jiàn)解析;(3)17.
【解析】
(1)點(diǎn)、
分別是
、
的中點(diǎn),及
,可得:
,根據(jù)SAS判定
,即可得出
,
,可得
,即可證
;
(2)根據(jù)SAS判定,即可得出
,
,可得
,即可證
;
(3)根據(jù)SAS判定,即可得出
,將
轉(zhuǎn)化為:
進(jìn)行求解即可.
解:(1)證明:連接,
∵點(diǎn)、
分別是
、
的中點(diǎn),
∴
∵,
∴
∵,
,
為
中點(diǎn),
∴,且
平分
,
.
∴
在和
中,
,
∴,
∴,
∵,
∴,
即,即
故答案為:,
;
(2)結(jié)論成立:,
;
證明:連接,
∵,
,
為
中點(diǎn),
∴,且
平分
,
.
∴
在和
中,
,
∴,
∴,
∵,
∴,
即,即
(3)證明:連接,
∵
∴
∴
∵,
,
為
中點(diǎn),
∴,且
平分
,
,
∴
∴
∴
在和
中,
,
∴,
∴
即
∵為
中點(diǎn),
∴
∵,
∴,
∴
故答案為:17
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'與AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年我縣為了創(chuàng)建省級(jí)文明縣城,全面推行中小學(xué)校“社會(huì)主義核心價(jià)值觀”進(jìn)課堂.某校對(duì)全校學(xué)生進(jìn)行了檢測(cè)評(píng)價(jià),檢測(cè)結(jié)果分為(優(yōu)秀)、
(良好)、
(合格)、
(不合格)四個(gè)等級(jí).并隨機(jī)抽取若干名學(xué)生的檢測(cè)結(jié)果作為樣本進(jìn)行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
請(qǐng)根據(jù)統(tǒng)計(jì)表和統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次隨機(jī)抽取的樣本容量為__________;
(2)統(tǒng)計(jì)表中_________,
_________.
(3)若該校共有學(xué)生5000人,請(qǐng)你估算該校學(xué)生在本次檢測(cè)中達(dá)到“(優(yōu)秀)”等級(jí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,以AC為直徑的⊙O交AD于點(diǎn)E,交BC于點(diǎn)F,AB2=BFBC.
(1)求證:AB與⊙O相切;
(2)若.
①求證:AC2=ABCD;
②若AC=3,EF=2,則AB+CD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與
軸交于點(diǎn)
、
,頂點(diǎn)為M.
(1)求拋物線的解析式和點(diǎn)M的坐標(biāo);
(2)點(diǎn)E是拋物線段BC上的一個(gè)動(dòng)點(diǎn),設(shè)的面積為S,求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以A、P、C為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點(diǎn)E在AB上,AC與DE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④
;正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七年級(jí)學(xué)生的體重情況,隨機(jī)抽取了七年級(jí)m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個(gè)體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?
(3)如果該校七年級(jí)有1000名學(xué)生,請(qǐng)估算七年級(jí)體重低于47.5千克的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面內(nèi)容,并解答問(wèn)題:
楊輝和他的一個(gè)數(shù)學(xué)問(wèn)題
我國(guó)古代對(duì)代數(shù)的研究,特別是對(duì)方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢(qián)塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書(shū)共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個(gè)問(wèn)題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長(zhǎng)一十二步(寬比長(zhǎng)少一十二步),問(wèn)闊及長(zhǎng)各幾步.
請(qǐng)你用學(xué)過(guò)的知識(shí)解決這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“雙十一”購(gòu)物街中,某兒童品牌玩具專賣(mài)店購(gòu)進(jìn)了兩種玩具,其中
類玩具的金價(jià)比
玩具的進(jìn)價(jià)每個(gè)多
元.經(jīng)調(diào)查發(fā)現(xiàn):用
元購(gòu)進(jìn)
類玩具的數(shù)量與用
元購(gòu)進(jìn)
類玩具的數(shù)量相同.
(1)求的進(jìn)價(jià)分別是每個(gè)多少元?
(2)該玩具店共購(gòu)進(jìn)了兩類玩具共
個(gè),若玩具店將每個(gè)
類玩具定價(jià)為
元出售,每個(gè)
類玩具定價(jià)
元出售,且全部售出后所獲得的利潤(rùn)不少于
元,則該淘寶專賣(mài)店至少購(gòu)進(jìn)
類玩具多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com