已知:如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,MOB的中點,CM的延長線交⊙O于點E,且EMMC.連結(jié)DE,DE=.

(1) 求證:;

(2) 求EM的長;

(3)求sin∠EOB的值.

解:⑴ 連接AC,EB,則∠CAM=∠BEM.

又∠AMC=∠EMB, ∴△AMC∽△EMB

∴ ,即

(2) ∵DC為⊙O的直徑,

∴∠DEC=90°,EC=  

OA=OB=4,MOB的中點,∴AM=6,BM=2.

設(shè)EM=x,則CM=7-x.代入(1),得 .

解得x1=3,x2=4.但EMMC,∴EM=4.

(3) 由(2)知,OE=EM=4.作EFOBF,則OF=MF=OB=1.

在Rt△EOF中,EF= 

∴sin∠EOB=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O精英家教網(wǎng)于點E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求EM的長;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點C、F為頂點作矩形CDEF,頂點D、E在⊙O的劣弧
AB
上,OM⊥DE于點M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在半徑為2的半圓O中,半徑OA垂直于直徑BC,點E與點F分別在弦AB、AC精英家教網(wǎng)上滑動并保持AE=CF,但點F不與A、C重合,點E不與A、B重合.
(1)求四邊形AEOF的面積.
(2)設(shè)AE=x,S△OEF=y,寫出y與x之間的函數(shù)關(guān)系式,求x取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直徑AB延長線上的點,且BP=12,求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在半徑為8的⊙O中,AB,CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=2
15

(1)求證:
AM
EM
=
MC
MB
;
(2)求EM的長;
(3)求sin∠EOB的值.

查看答案和解析>>

同步練習冊答案