【題目】如圖已知,于點(diǎn),于點(diǎn)交于點(diǎn).,,.
(1)若,點(diǎn)是上一點(diǎn),當(dāng)點(diǎn)到點(diǎn)和點(diǎn)的距離相等時(shí),求的長(zhǎng);
(2)若,點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),連接,,,求的最小值.
【答案】(1) (2)
【解析】
(1)如圖1中,連接AB,作線段AB的中垂線MN,交AB于N,交EF于M,連接AM,BM.設(shè)DM=x.根據(jù)MA=MB構(gòu)建方程即可解決問(wèn)題;
(2)如圖2中,如圖,作點(diǎn)A故直線GH 的對(duì)稱(chēng)點(diǎn)A′,點(diǎn)B關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)B′,連接A′B′交GH于點(diǎn)P,交EF于點(diǎn)Q,作B′H⊥CA交CA的延長(zhǎng)線于H.則此時(shí)AP+PQ+QB的值最。钚≈禐榫段A′B′的長(zhǎng);
解:(1)如圖1中,連接AB,作線段AB的中垂線MN,交AB于N,交EF于M,連接AM,BM.設(shè)DM=x.
在Rt△ACM中,AM2=AC2+CM2=32+(6-x)2,
在Rt△BDM中,BM2=DM2+BD2=x2+62,
∵AM=MB,
∴32+(6-x)2=x2+62,
解得x=,
∴CM=CD-MD=6- = .
(2)如圖2中,如圖,作點(diǎn)A故直線GH 的對(duì)稱(chēng)點(diǎn)A′,點(diǎn)B關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)B′,連接A′B′交GH于點(diǎn)P,交EF于點(diǎn)Q,作B′H⊥CA交CA的延長(zhǎng)線于H.
則此時(shí)AP+PQ+QB的值最。
根據(jù)對(duì)稱(chēng)的性質(zhì)可知:PA=PA′,QB=QB′,
∴PA+PQ+QB=PA′+PQ+QB′=A′B′,
∴PA+PQ+PB的最小值為線段A′B′的長(zhǎng),
在Rt△A′B′H中,∵HB′=CD= ,
HA′=DB′+CA′=7+6=13,
∴A′B′= ,
∴AP+PQ+QB的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)D是等邊△ABC內(nèi)一點(diǎn),DA=13,DB=19,DC=21,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACE的位置,求△DEC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2017個(gè)正方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過(guò)頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過(guò)點(diǎn)E的直線l交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,-2),則點(diǎn)F的坐標(biāo)是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△OA1B1,△A1A2B2,△A2A3B3,…,△An﹣1AnBn,都是等腰直角三角形,斜邊OB1,A1B2,…,An﹣1Bn的中點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)都在函數(shù)的圖象上,則y1+y2+y3+…+yn=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一座拋物線形拱橋,正常水位時(shí)橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的解析式;
(2)設(shè)正常水位時(shí)橋下的水深為2m,為保證過(guò)往船只順利航行,橋下水面的寬度不得小于18m,求水深超過(guò)多少米時(shí)就會(huì)影響過(guò)往船只在橋下的順利航行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,1),B(-1,3),C(0,1).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-3),畫(huà)出平移后的△A2B2C2;
(3)若△A2B2C2和△A1B1C關(guān)于點(diǎn)P中心對(duì)稱(chēng),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的頂點(diǎn)A在y軸正半軸上,邊BC在x軸上,且BC=5,sin∠ABC=,反比例函數(shù)(x>0)的圖象分別與AD,CD交于點(diǎn)M、點(diǎn)N,點(diǎn)N的坐標(biāo)是(3,n),連接OM,MC.
(1)求反比例函數(shù)的解析式;
(2)求證:△OMC是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com