【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交點為A-3,0),與y軸交點為B,且與正比例函數(shù)的圖象的交于點Cm,4).

1)求m的值及一次函數(shù)y=kx+b的表達式;

2)若點Py軸上一點,且BPC的面積為6,請直接寫出點P的坐標.

【答案】(1)m的值為3,一次函數(shù)的表達式為

(2) P 的坐標為(0, 6)、(0,-2)

【解析】

(1)首先利用待定系數(shù)法把C(m,4)代入正比例函數(shù)y=x中,計算出m的值,進而得到C點坐標,再利用待定系數(shù)法A、C兩點坐標代入一次函數(shù)y=kx+b中,計算出k、b的值進而得到一次函數(shù)解析式.

(2)利用△BPC的面積為6,即可得出點P的坐標.

解:(1)∵ Cm,4)在正比例函數(shù)的圖象上,

·m, 即點C坐標為(34

一次函數(shù) 經(jīng)過A(-30)、點C34

解得:

一次函數(shù)的表達式為

2 P 的坐標為(0, 6)、(0,-2

“點睛”此題主要考查了待定系數(shù)法求一次函數(shù)解析式知識,根據(jù)待定系數(shù)法把A、C兩點坐標代入函數(shù)y=kx+b中,計算出k、b的值是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD,EF相交于點O.

(1)寫出∠COE的鄰補角;

(2)分別寫出∠COE和∠BOE的對頂角;

(3)如果∠BOD60°,∠BOF90°,求∠AOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點E,點P是線段DE上一定點(其中EP<PD)
(1)如圖1,若點F在CD邊上(不與D重合),將∠DPF繞點P逆時針旋轉90°后,角的兩邊PD、PF分別交射線DA于點H、G.

①求證:PG=PF; ②探究:DF、DG、DP之間有怎樣的數(shù)量關系,并證明你的結論.
(2)拓展:如圖2,若點F在CD的延長線上(不與D重合),過點P作PG⊥PF,交射線DA于點G,你認為(1)中DF、DG、DP之間的數(shù)量關系是否仍然成立?若成立,給出證明;若不成立,請寫出它們所滿足的數(shù)量關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=m(x+1)(x﹣2)(m為常數(shù),且m>0)與x軸從左至右依次交于A、B兩點,與y軸交于點C,且OA=OC,經(jīng)過點B的直線與拋物線的另一交點D在第二象限.

(1)求拋物線的函數(shù)表達式.
(2)若∠DBA=30°,設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

(1)請問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳市統(tǒng)計局發(fā)布的2016年《深圳市氣候數(shù)據(jù)每日觀測記錄》顯示,2016年12月26—21日這六天的平均相對濕度(百分數(shù))分別是58,50,45,54,64,82.對于這組數(shù)據(jù),以下說法正確的是( )
A.平均數(shù)是59
B.中位數(shù)是56
C.眾數(shù)是82
D.方差是37

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如何求tan75°的值?按下列方法作圖可解決問題.如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD.連接此圖可求得tan75°的值為( )

A.2-
B.2+
C.1+
D.
-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在求一個多邊形的內(nèi)角和時,由于疏忽,把一個內(nèi)角加了兩遍,而求出的結果為2004°,請問這個內(nèi)角是多少度?這個多邊形是幾邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, AC BC , BD AD ,垂足分別為C D , AC BD , AC 、BD 交于O

(1)求證: CAB DBA ;

(2)求證: SADO SBCO

查看答案和解析>>

同步練習冊答案